『壹』 解分解因式的簡單方法
因式分解(factorization)
因式分解是中學數學中最重要的恆等變形之一,它被廣泛地應用於初等數學之中,是我們解決許多數學問題的有力工具.因式分解方法靈活,技巧性強,學習這些方法與技巧,不僅是掌握因式分解內容所必需的,而且對於培養學生的解題技能,發展學生的思維能力,都有著十分獨特的作用.初中數學教材中主要介紹了提取公因式法、運用公式法、分組分解法和十字相乘法.而在競賽上,又有拆項和添項法,待定系數法,雙十字相乘法,輪換對稱法等.
⑴提公因式法
①公因式:各項都含有的公共的因式叫做這個多項式各項的~.
②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的. 如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數是正的.
⑵運用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m為奇數)
⑶分組分解法
分組分解法:把一個多項式分組後,再進行分解因式的方法.
分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式.
⑷拆項、補項法
拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形.
⑸十字相乘法
①x^2+(p q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;一次項系數是常數項的兩個因數的和.因此,可以直接將某些二次項的系數是1的二次三項式因式分解: x^2+(p q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那麼
kx^2+mx+n=(ax b)(cx d)
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多項式因式分解的一般步驟:
①如果多項式的各項有公因式,那麼先提公因式;
②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;
④分解因式,必須進行到每一個多項式因式都不能再分解為止.
(6)應用因式定理:如果f(a)=0,則f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,則可確定(x+2)是x^2+5x+6的一個因式。
經典例題:
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2
解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)
2.證明:對於任何數x,y,下式的值都不會為33
x^5+3x^4y-5x^3y^2+4xy^4+12y^5
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y)
當y=0時,原式=x^5不等於33;當y不等於0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數的積,所以原命題成立
因式分解的十二種方法
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解。因式分解的方法多種多樣,現總結如下:
1、 提公因法
如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
例1、 分解因式x -2x -x(2003淮安市中考題)
x -2x -x=x(x -2x-1)
2、 應用公式法
由於分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考題)
解:a +4ab+4b =(a+2b)
3、 分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
對於mx +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添項法
可以把多項式拆成若幹部分,再用進行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多項式f(x)=0,求出其根為x ,x ,x ,……x ,則多項式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通過綜合除法可知,f(x)=0根為 ,-3,-2,1
則2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 圖象法
令y=f(x),做出函數y=f(x)的圖象,找到函數圖象與x軸的交點x ,x ,x ,……x ,則多項式可因式分解為f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其圖象,見右圖,與x軸交點為-3,-1,2
則x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此題可選定a為主元,將其按次數從高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,則x +9x +23x+15=8+36+46+15=105
將105分解成3個質因數的積,即105=3×5×7
注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值
則x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知這個多項式沒有一次因式,因而只能分解為兩個二次因式。
解:設x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
則x -x -5x -6x-4 =(x +x+1)(x -2x-4)
『貳』 數學因式分解
例1 把2x^2-7x+3分解因式.
分析:先分解二次項系數,分別寫在十字交叉線的左上角和左下角,再分解常數項,分
別寫在十字交叉線的右上角和右下角,然後交叉相乘,求代數和,使其等於一次項系數.
分解二次項系數(只取正因數):
2=1×2=2×1;
分解常數項:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用畫十字交叉線方法表示下列四種情況:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
經過觀察,第四種情況是正確的,這是因為交叉相乘後,兩項代數和恰等於一次項系數-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,對於二次三項式ax2+bx+c(a≠0),如果二次項系數a可以分解成兩個因數之積,即a=a1a2,常數項c可以分解成兩個因數之積,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1c2+a2c1
按斜線交叉相乘,再相加,得到a1c2+a2c1,若它正好等於二次三項式ax2+bx+c的一次項系數b,即a1c2+a2c1=b,那麼二次三項式就可以分解為兩個因式a1x+c1與a2x+c2之積,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像這種藉助畫十字交叉線分解系數,從而幫助我們把二次三項式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次項系數6及常數項-5,把它們分別排列,可有8種不同的排列方法,其中的一種
2 1
╳
3 -5
2×(-5)+3×1=-7
是正確的,因此原多項式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通過例1和例2可以看到,運用十字相乘法把一個二次項系數不是1的二次三項式因式分解,往往要經過多次觀察,才能確定是否可以用十字相乘法分解因式.
對於二次項系數是1的二次三項式,也可以用十字相乘法分解因式,這時只需考慮如何把常數項分解因數.例如把x^2+2x-15分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:這個多項式可以看作是關於x的二次三項式,把-8y^2看作常數項,在分解二次項及常數項系數時,只需分解5與-8,用十字交叉線分解後,經過觀察,選取合適的一組,即
1 2
�╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解為兩個關於x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:這個多項式是兩個因式之積與另一個因數之差的形式,只有先進行多項式的乘法運算,把變形後的多項式再因式分解.
問:兩上乘積的因式是什麼特點,用什麼方法進行多項式的乘法運算最簡便?
答:第二個因式中的前兩項如果提出公因式2,就變為2(x-y),它是第一個因式的二倍,然後把(x-y)看作一個整體進行乘法運算,可把原多項式變形為關於(x-y)的二次三項式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
╳
2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一個整體進行因式分解,這又是運用了數學中的「整體」思想方法.
例5 x^2+2x-15
分析:常數項(-15)<0,可分解成異號兩數的積,可分解為(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和為2。
=(x-3)(x+5)
總結:①x^2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;一次項系數是常數項的兩個因數的和.因此,可以直接將某些二次項的系數是1的二次三項式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那麼
kx^2+mx+n=(ax+b)(cx+d)
a b
╳
c d
通俗方法
先將二次項分解成(1 X 二次項系數),將常數項分解成(1 X 常數項)然後以下面的格式寫
1 1
X
二次項系數 常數項
若交叉相乘後數值等於一次項系數則成立 ,不相等就要按照以下的方法進行試驗。(一般的題很簡單,最多3次就可以算出正確答案。)
需要多次實驗的格式為:(注意:此時的abcd不是指(ax^2+bx+c)裡面的系數,而且abcd最好為整數)
a b
╳
c d
第一次a=1 b=1 c=二次項系數÷a d=常數項÷b
第二次a=1 b=2 c=二次項系數÷a d=常數項÷b
第三次a=2 b=1 c=二次項系數÷a d=常數項÷b
第四次a=2 b=2 c=二次項系數÷a d=常數項÷b
第五次a=2 b=3 c=二次項系數÷a d=常數項÷b
第六次a=3 b=2 c=二次項系數÷a d=常數項÷b
第七次a=3 b=3 c=二次項系數÷a d=常數項÷b
......
依此類推
直到(ad+cb=一次項系數)為止。最終的結果格式為(ax+b)(cx+d)
例解:
2x^2+7x+6
第一次:
1 1
╳
2 6
1X6+2X1=8 8>7 不成立 繼續試
第二次
1 2
╳
2 3
1X3+2X2=7 所以 分解後為:(x+2)(2x+3) [編輯本段]⒉十字相乘法(解決兩者之間的比例問題) 原理
一個集合中的個體,只有2個不同的取值,部分個體取值為A,剩餘部分取值為B。平均值為C。求取值為A的個體與取值為B的個體的比例。假設A有X,B有(1-X)。
AX+B(1-X)=C
X=(C-B)/(A-B)
1-X=(A-C)/(A-B)
因此:X∶(1-X)=(C-B)∶(A-C)
上面的計算過程可以抽象為:
A ………C-B
……C
B……… A-C
這就是所謂的十字相乘法。
十字相乘法使用時的注意
第一點:用來解決兩者之間的比例問題。
第二點:得出的比例關系是基數的比例關系。
第三點:總均值放中央,對角線上,大數減小數,結果放在對角線上。
『叄』 因式分解12種方法圖解
因式分解方法如下:
一、提取公因式法
提取公因式法是最基本的因式分解方法,甚至可以說後面的因式分解方法都是在這個基礎上進行使用。一般來說,提取公因式法的使用針對比較直觀的因式進行提取,例如學生在多項式中直接看到有一個共同項,立刻就想到提取公因式。
例1:因式分解:3x^3+8x^2y+6x^2y^3=x^2(3x+8y+6y^3)
有些多項式進行提取公因式法之後,還要進一步進行因式分解,如果沒有分解到不能再分,不能算是正確答案。
三、完全平方差公式法
完全平方差公式法和完全平方和公式法如同孿生兄弟,二者極其相似,它的基本表達式子是x^2-2xy+y^2,它是(x-y)(x-y)的乘積,而在實際因式分解中,並不像公式那樣的明顯,例如x^2-6x+9,x^2-4xy+4y^2.下面看一個常見的例子:x^2+y^2-2xy-6x+6y+9
解析:通過觀察發現這個式子可以變成x^2-6x+9-2y(x-3)+y^2,可以構成一個完全平方差公式。
『肆』 因式分解的方法與技巧
因式分解的方法與技巧如下:
因式分解並不難,分解方法要記全,各項若有公因式,首先提取莫遲緩,各項若無公因式,
套用公式來試驗。
如果是個二項式,平方差公式要領先,如果是個三項式,完全平方想周
全,以上方法都不行,運用分組看一看,面對二次三項式,十字相乘求方便,能分解的再分
解,不能分解是答案。
把一個多項式在一個范圍(如實數范圍內分解,即所有項均為實數)化為幾個整式的積的形
式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。
分解一般步驟
1、如果多項式的首項為負,應先提取負號;
這里的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括弧內第一項系數是正的。
2、如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;
要注意:多項式的某個整項是公因式時,先提出這個公因式後,括弧內切勿漏掉1;提公因式要一次性提干凈,並使每一個括弧內的多項式都不能再分解。
3、如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
4、如果用上述方法不能分解,再嘗試用分組、拆項、補項法來分解。
口訣:先提首項負號,再看有無公因式,後看能否套公式,十字相乘試一試,分組分解要合適。
『伍』 因式分解講解過程
1
因式分解首先是提公因式法,我們可以提出多項式中的公共因式,來達到飲食分解的目的。
2
需要注意的是我們的公因式是需要是字母部分的公因式和常數部分的公因式一起提出來,同時需要注意留下來的項是用括弧括在一起,還有注意符號的變化。
3
利用公式法因式分解,我們公式法因式分解,是利用兩個一個是平方差公式,一個是完全平方公式。
4
利用兩個公式需要熟記我們公式計算方法,和適用的形式,注意我們的平方差是需要兩個數的平方,注意多次平方差公式的運用。還有完全平方和我們的平方差的聯合運用。
5
十字交叉法因式分解,十字交叉實際上是利用完全平方和平方差進行的見簡便運算方法,利用十字交叉的時候需要注意我們的逐步的講解和分析十字交叉的原理,進而讓學生理解。
6
我們可以用完全皮方公式進行配方,然後用平方差公式進行因式分解就可以得到十字交叉的結果,進而講解會比較好點。
『陸』 如何分解因式
要看題目具體條件的哦,方法有很多
⑴提公因式法
①公因式:各項都含有的公共的因式叫做這個多項式各項的~.
②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的. 如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數是正的.
⑵運用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m為奇數)
⑶分組分解法
分組分解法:把一個多項式分組後,再進行分解因式的方法.
分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式.
⑷拆項、補項法
拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形.
⑸十字相乘法
①x^2+(p q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;一次項系數是常數項的兩個因數的和.因此,可以直接將某些二次項的系數是1的二次三項式因式分解: x^2+(p q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那麼
kx^2+mx+n=(ax b)(cx d)
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多項式因式分解的一般步驟:
見 ██星星██的回答
(6)應用因式定理:如果f(a)=0,則f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,則可確定(x+2)是x^2+5x+6的一個因式。
經典例題:
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2
解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)
2.證明:對於任何數x,y,下式的值都不會為33
x^5+3x^4y-5x^3y^2+4xy^4+12y^5
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y)
當y=0時,原式=x^5不等於33;當y不等於0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數的積,所以原命題成立
補充:
因式分解的十二種方法
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解。因式分解的方法多種多樣,現總結如下:
1、 提公因法
如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
例1、 分解因式x^3 -2x^2 -x(2003淮安市中考題)
x^3 -2x^2 -x=x(x^2 -2x-1)
2、 應用公式法
由於分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。
例2、分解因式a^2 +4ab+4b^2 (2003南通市中考題)
解:a^2 +4ab+4b^2 =(a+2b)
3、 分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
例3、分解因式m^2 +5n-mn-5m
解:m^2+5n-mn-5m= m^2-5m -mn+5n
= (m^2 -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
對於mx^2 +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
例4、分解因式7x^2 -19x-6
分析:
1 -3
7 2
2-21=-19
解:7x^2 -19x-6=(7x+2)(x-3)
5、配方法
對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
例5、分解因式x^2 +3x-40
解x^2 +3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5)
補充:
6、拆、添項法
可以把多項式拆成若幹部分,再用進行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
8、 求根法
令多項式f(x)=0,求出其根為x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例8、分解因式2x^4 +7x^3 -2x^2 -13x+6
解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0
通過綜合除法可知,f(x)=0根為1/2 ,-3,-2,1
則2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 圖像法
令y=f(x),做出函數y=f(x)的圖像,找到函數圖像與X軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例9、因式分解x^3 +2x^2 -5x-6
解:令y= x^3 +2x^2 -5x-6
作出其圖像,與x軸交點為-3,-1,2
則x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此題可選定a為主元,將其按次數從高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
補充:
例11、分解因式x^3 +9x^2 +23x+15
解:令x=2,則x^3 +9x^2 +23x+15=8+36+46+15=105
將105分解成3個質因數的積,即105=3×5×7
注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值
則x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,驗證後的確如此。
12、待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例12、分解因式x^4 -x^3 -5x^2 -6x-4
分析:易知這個多項式沒有一次因式,因而只能分解為兩個二次因式。
解:設x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d)
= x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd
所以 解得
則x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)
『柒』 因式分解公式法的步驟
因式分解公式法的步驟如下:
如果多項式的首項為負,應先提取負號;
如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;
如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
如果用上述方法不能分解,再嘗試用分組、拆項、補項法來分解。
當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式。
多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。
『捌』 怎麼快速分解因式
因式分解的一般步驟是:一提二套三分解
一提:即提公因式,看到因式分解的題目,首先看有沒有公因式,若有,則
先提公因式;若沒有,則套用公式.
二套:即套用公式,在沒有公因式的前提下,則套用公式,
常用公式有:a^2-b^2=(a+b)(a-b)
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
十字相乘法:x^2+(a+b)x+ab=(x+a)(x+b)
舉例:x^2+5x+6=(x+3)(x+2)
即分組分解法.對於四項或四項以上的,一般都採用這種方法
下面主要對分組分解法和其他常見的方法歸納如下.
一、分組分解因式的幾種常用方法.
1.按公因式分解
例1 分解因式7x2-3y+xy+21x.
分析:第1、4項含公因式7x,第2、3項含公因式y,分組後又有公因式(x-3),
原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).
2.按系數分解
例2 分解因式x3+3x2+3x+9.
分析:第1、2項和3、4項的系數之比1:3,把它們按系數分組.
解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).
3.按次數分組
例3 分解因式 m2+2m·n-3m-3n+n2.
分析:第1、2、5項是二次項,第3、4項是一次項,按次數分組後能用公式和提取公因式.
原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).
4.按乘法公式分組
分析:第1、3、4項結合正好是完全平方公式,分組後又與第二項用平方差公式.
5.展開後再分組
例5 分解因式ab(c2+d2)+cd(a2+b2).
分析:將括弧展開後再重新分組.
原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).
6.拆項後再分組
例6 分解因式x2-y2+4x+2y+3.
分析:把常數拆開後再分組用乘法公式.
原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).
7.添項後再分組
例7 分解因式x4+4.
分析:上式項數較少,較難分解,可添項後再分組.
原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)
二、用換元法進行因式分解
用添加輔助元素的換元思想進行因式分解就是原式繁雜直接分解有困難,通過換元化為簡單,從而分步完成.
例8 分解因式(x2+3x-2)(x2+3x+4)-16.
分析:將令y=x2+3x,則原式轉化為(y-2)(y+4)-16再分解就簡單了.
令y=x2+3x,則
原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).
因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).
三、用求根法進行因式分解
例9 分解因式x2+7x+2.
分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求該多項式對應方程的根再分解.
四、用待定系數法分解因式.
例10 分解因式x2+6x-16.
分析:假設能分解,則應分解為兩個一次項式的積形式,即(x+b1)(x+b2),將其展開得
x2+(b1+b2)x十b1·b2與x2+6x-16相比較得
b1+b2=6,b1·b2=-16,可得b1,b2即可分解.
設x2+6x-16=(x+b1)(x+b2)
則x2+6x-16=x2+(b1+b2)x+b1·b2
∴x2+6x-16=(x-2)(x+8).