導航:首頁 > 知識科普 > 算數學一元二次的簡便方法

算數學一元二次的簡便方法

發布時間:2022-12-25 06:36:28

㈠ 一元二次方程的解法有哪些

一元二次方程有四種解法:直接開平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法為通過「降次」將它化為兩個一元一次方程。

1、直接開平方法

形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可採用直接開平方法解一元二次方程。如果方程化成x²=p的形式,那麼可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那麼nx+m=±√p,進而得出方程的根。

2、配方法:用配方法解方程ax²+bx+c=0 (a≠0),先將常數c移到方程右邊,將二次項系數化為1,方程兩邊分別加上一次項系數的一半的平方,方程左邊成為一個完全平方式。

3、公式法:把一元二次方程化成一般形式,然後計算判別式△=b²-4ac的值,當b²-4ac≥0時,把各項系數a,b,c的值代入求根公式就可得到方程的根。

4、因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。


把二次方程分成不同形式作討論,是依照丟番圖的做法。


法國的韋達(1540~1603)除推出一元方程在復數范圍內恆有解外,還給出了根與系數的關系

㈡ 怎樣運算一元二次方程

一元二次方程的解法

一、知識要點:

一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基

礎,應引起同學們的重視。

一元二次方程的一般形式為:ax2+bx+c=0, (a≠0),它是只含一個未知數,並且未知數的最高次數是2

的整式方程。

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解

法:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例題精講:

1、直接開平方法:

直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的

方程,其解為x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以

此方程也可用直接開平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丟解)

∴x=

∴原方程的解為x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解為x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先將常數c移到方程右邊:ax2+bx=-c

將二次項系數化為1:x2+x=-

方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2

方程左邊成為一個完全平方式:(x+ )2=

當b2-4ac≥0時,x+ =±

∴x=(這就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:將常數項移到方程右邊 3x2-4x=2

將二次項系數化為1:x2-x=

方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接開平方得:x-=±

∴x=

∴原方程的解為x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項

系數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解為x1=,x2= .

4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓

兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個

根。這種解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)

(1)解:(x+3)(x-6)=-8 化簡整理得

x2-3x-10=0 (方程左邊為二次三項式,右邊為零)

(x-5)(x+2)=0 (方程左邊分解因式)

∴x-5=0或x+2=0 (轉化成兩個一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法將方程左邊分解因式)

∴x=0或2x+3=0 (轉化成兩個一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

小結:

一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般

形式,同時應使二次項系數化為正數。

直接開平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式

法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程

是否有解。

配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方

法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定系數法)。

例5.用適當的方法解下列方程。(選學)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先應觀察題目有無特點,不要盲目地先做乘法運算。觀察後發現,方程左邊可用平方差

公式分解因式,化成兩個一次因式的乘積。

(2)可用十字相乘法將方程左邊因式分解。

(3)化成一般形式後利用公式法解。

(4)把方程變形為 4x2-2(2m+5)x+(m+2)(m+3)=0,然後可利用十字相乘法因式分解。

(1)解:4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)解:x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)解:4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (選學)

分析:此方程如果先做乘方,乘法,合並同類項化成一般形式後再做將會比較繁瑣,仔細觀察題目,我

們發現如果把x+1和x-4分別看作一個整體,則方程左邊可用十字相乘法分解因式(實際上是運用換元的方

法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解。

例7.用配方法解關於x的一元二次方程x2+px+q=0

解:x2+px+q=0可變形為

x2+px=-q (常數項移到方程右邊)

x2+px+( )2=-q+()2 (方程兩邊都加上一次項系數一半的平方)

(x+)2= (配方)

當p2-4q≥0時,≥0(必須對p2-4q進行分類討論)

∴x=- ±=

∴x1= ,x2=

當p2-4q<0時,<0此時原方程無實根。

說明:本題是含有字母系數的方程,題目中對p, q沒有附加條件,因此在解題過程中應隨時注意對字母

取值的要求,必要時進行分類討論。

練習:

(一)用適當的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列關於x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

練習參考答案:

(一)1.x1=- ,x2= 2.x1=2,x2=-2

3.x1=0,x2= 4.x1=x2=2 5.x1=x2=

6.解:(把2x+3看作一個整體,將方程左邊分解因式)

[(2x+3)+6][(2x+3)-1]=0

即 (2x+9)(2x+2)=0

∴2x+9=0或2x+2=0

∴x1=-,x2=-1是原方程的解。

(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0

[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0

∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0

∴x1= +b,x2= -b是 ∴x1= a,x2=a是

原方程的解。 原方程的解。

測試

選擇題

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多項式a2+4a-10的值等於11,則a的值為( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次項系數,一次項系數和常數項之和等於零,那麼方程必有一個

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一個根是零的條件為( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的兩個根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、無實根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左邊配成一個完全平方式後,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上答案都不對

9. 已知一元二次方程x2-2x-m=0,用配方法解該方程配方後的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1

答案與解析

答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D

解析:

1.分析:移項得:(x-5)2=0,則x1=x2=5,

注意:方程兩邊不要輕易除以一個整式,另外一元二次方程有實數根,一定是兩個。

2.分析:依題意得:a2+4a-10=11, 解得 a=3或a=-7.

3.分析:依題意:有a+b+c=0, 方程左側為a+b+c, 且具僅有x=1時, ax2+bx+c=a+b+c,意味著當x=1

時,方程成立,則必有根為x=1。

4.分析:一元二次方程 ax2+bx+c=0若有一個根為零,

則ax2+bx+c必存在因式x,則有且僅有c=0時,存在公因式x,所以 c=0.

另外,還可以將x=0代入,得c=0,更簡單!

5.分析:原方程變為 x2-3x-10=0,

則(x-5)(x+2)=0

x-5=0 或x+2=0

x1=5, x2=-2.

6.分析:Δ=9-4×3=-3<0,則原方程無實根。

7.分析:2x2=0.15

x2=

x=±

注意根式的化簡,並注意直接開平方時,不要丟根。

8.分析:兩邊乘以3得:x2-3x-12=0,然後按照一次項系數配方,x2-3x+(-)2=12+(- )2,

整理為:(x-)2=

方程可以利用等式性質變形,並且 x2-bx配方時,配方項為一次項系數-b的一半的平方。

9.分析:x2-2x=m, 則 x2-2x+1=m+1

則(x-1)2=m+1.

中考解析

考題評析

1.(甘肅省)方程的根是( )

(A) (B) (C) 或 (D) 或

評析:因一元二次方程有兩個根,所以用排除法,排除A、B選項,再用驗證法在C、D選項中選出正確

選項。也可以用因式分解的方法解此方程求出結果對照選項也可以。選項A、B是只考慮了一方面忘記了一元

二次方程是兩個根,所以是錯誤的,而選項D中x=-1,不能使方程左右相等,所以也是錯誤的。正確選項為

C。

另外常有同學在方程的兩邊同時除以一個整式,使得方程丟根,這種錯誤要避免。

2.(吉林省)一元二次方程的根是__________。

評析:思路,根據方程的特點運用因式分解法,或公式法求解即可。

3.(遼寧省)方程的根為( )

(A)0 (B)–1 (C)0,–1 (D)0,1

評析:思路:因方程為一元二次方程,所以有兩個實根,用排除法和驗證法可選出正確選項為C,而A、

B兩選項只有一個根。D選項一個數不是方程的根。另外可以用直接求方程根的方法。

4.(河南省)已知x的二次方程的一個根是–2,那麼k=__________。

評析:k=4.將x=-2代入到原方程中去,構造成關於k的一元二次方程,然後求解。

5.(西安市)用直接開平方法解方程(x-3)2=8得方程的根為( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

評析:用解方程的方法直接求解即可,也可不計算,利用一元二次方程有解,則必有兩解及8的平方

根,即可選出答案。

課外拓展

一元二次方程

一元二次方程(quadratic equation of one variable)是指含有一個未知數且未知數的最高次項是二

次的整式方程。 一般形式為

ax2+bx+c=0, (a≠0)

在公元前兩千年左右,一元二次方程及其解法已出現於古巴比倫人的泥板文書中:求出一個數使它與它

的倒數之和等於 一個已給數,即求出這樣的x與,使

x=1, x+ =b,

x2-bx+1=0,

他們做出( )2;再做出 ,然後得出解答:+ 及 - 。可見巴比倫人已知道一元二次

方程的求根公式。但他們當時並不接受 負數,所以負根是略而不提的。

埃及的紙草文書中也涉及到最簡單的二次方程,例如:ax2=b。

在公元前4、5世紀時,我國已掌握了一元二次方程的求根公式。

希臘的丟番圖(246-330)卻只取二次方程的一個正根,即使遇到兩個都是正根的情況,他亦只取其中

之一。

公元628年,從印度的婆羅摩笈多寫成的《婆羅摩修正體系》中,得到二次方程x2+px+q=0的一個求根公

式。

在阿拉伯阿爾.花拉子米的《代數學》中討論到方程的解法,解出了一次、二次方程,其中涉及到六種

不同的形式,令 a、b、c為正數,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成

不同形式作討論,是依照丟番圖的做法。阿爾.花拉子米除了給出二次方程的幾種特殊解法外,還第一 次

給出二次方程的一般解法,承認方程有兩個根,並有無理根存在,但卻未有虛根的認識。十六世紀義大利的

數學家們為了解三次方程而開始應用復數根。

韋達(1540-1603)除已知一元方程在復數范圍內恆有解外,還給出根與系數的關系。

我國《九章算術.勾股》章中的第二十題是通過求相當於 x2+34x-71000=0的正根而解決的。我國數學

家還在方程的研究中應用了內插法。

㈢ 一元二次方程有沒有簡便的計算方法

公式法是比較快的
方法 一、公式法
1
先判斷△=b²-4ac,
若△<0原方程無實根;
2
若△=0,
原方程有兩個相同的解為:
X=-b/(2a);
3
若△>0,
原方程的解為:
X=((-b)±√(△))/(2a)。
END
方法二、配方法
先把常數c移到方程右邊得:
aX²+bX=-c
將二次項系數化為1得:
X²+(b/a)X=- c/a
3
方程兩邊分別加上(b/a)的一半的平方得:
X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²
4
方程化為:
(b+(2a))²=- c/a +(b/(2a))²
5
①、若- c/a +(b/(2a))²<0,原方程無實根;
②、若- c/a +(b/(2a))² =0,原方程有兩個相同的解為X=-b/(2a);
③、若- c/a +(b/(2a))²>0,原方程的解為X=(-b)±√((b²-4ac))/(2a)。
END
方法三、直接開平方法
1
形如(X-m)²=n (n≥0)一元二次方程可以直接開平方法求得解為X=m±√n
END
方法四、因式分解法
1
將一元二次方程aX²+bX+c=0化為如(mX-n)(dX-e)=0的形式可以直接求得解為X=n/m,或X=e/d。

㈣ 數學一元二次方程解法

數學一元二次方程解法有直接開平方法、配方法、公式法、因式分解法。

二、配方法:把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一個含有未知數的完全平方式,右端是一個非負常數,進而可用直接開平方法來求解。一般步驟是移項、二次項系數化成1,配方,開平方根。配方法適用於解所有一元二次方程。

三、公式法:利用求根公式,直接求解。把一元二次方程的各系數代入求根公式,直接求出方程的解。

1、把方程化為一般形式。

2、確定a、b、c的值。

3、計算b-4ac的值。

4、當b-4ac≥0時,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;當b-4ac<0時,方程沒有實數根。

5、需要注意的是:公式法是解一元二次方程的一般方法,又叫萬能方法,對於任意一個一元二次方程,只要有解,就一定能用求根公式解出來。求根公式是用配方法解一元二次方程的結果,用它直接解方程避免繁雜的配方過程。因此沒有特別要求,一般不會用配方法解方程。

四、因式分解法:先因式分解,使方程化為兩個一次式的乘積等於0的形式,再使這兩個一次式分別等於0,從而實現降次。

1、移項:將方程的右邊化為0。

2、化積:把左邊因式分解成兩個一次式的積。

3、轉化:令每個一次式都等於0,轉化為兩個一元一次方程。

4、求解:解這兩個一元一次方程,它們的解就是原方程的解。

5、需要注意的是:在方程的右邊沒有化為0前,不能把左邊進行因式分解;不是所有的一元二次方程都能用因式分解法求解,即因式分解法只適用部分一元二次方程。

㈤ 數學一元二次方程的解法

配方法
(直接開)
形如x=p或(nx+m)=p(p≥0)的一元二次方程可採用直接開平方的方法解一元二次方程.
如果方程化成x²=p的形式,那麼可得x=±p;(x²=p,x=±根號p)
如果方程能化成(nx+m)=p(p≥0)的形式,那麼nx+m=±p.(同上)
注意:①等號左邊是一個數的平方的形式而等號右邊是一個非負數.
②降次的實質是由一個一元二次方程轉化為兩個一元一次方程.
③方法是根據平方根的意義開平方
(配方法)
(1)將一元二次方程配成(x+m)=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.
(2)用配方法解一元二次方程的步驟:
①把原方程化為ax²+bx+c=0(a≠0)的形式;
②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;
③方程兩邊同時加上一次項系數一半的平方;
④把左邊配成一個完全平方式,右邊化為一個常數;
⑤如果右邊是非負數,就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數,則判定此方程無實數解.
配方法的應用:1、用配方法解一元二次方程.
配方法的理論依據是公式a²±2ab+b²=(a±b)
配方法的關鍵是:先將一元二次方程的二次項系數化為1,然後在方程兩邊同時加上一次項系數一半的平方.
2、利用配方法求二次三項式是一個完全平方式時所含字母系數的值.
關鍵是:二次三項式是完全平方式,則常數項是一次項系數一半的平方.
公式法
1)把 德爾塔=b²-4ac 叫做一元二次方程ax²+bx+c=0(a≠0)的判別式.
(2)用求根公式解一元二次方程的方法是公式法.
(3)用公式法解一元二次方程的一般步驟為:
①把方程化成一般形式,進而確定a,b,c的值(注意符號);
②求出b²-4ac的值(若b²-4ac0 方程有兩個不相等的實根,b²-4ac=0時方程有兩個等根 );
③在b²-4ac≥0的前提下,把a、b、c的值代入公式進行計算求出方程的根.
注意:用公式法解一元二次方程的前提條件有兩個:①a≠0;②b²-4ac≥0.
求根公式:

利用一元二次方程根的判別式(△=b-4ac)判斷方程的根的情況.
一元二次方程ax²+bx+c=0(a≠0)的根與△=b²-4ac有如下關系:
①當△>0時,方程有兩個不相等的兩個實數根;
②當△=0時,方程有兩個相等的兩個實數根;
③當△<0時,方程無實數根.
上面的結論反過來也成立.
根與系數的關系:
利用一元二次方程根的判別式(△=b-4ac)判斷方程的根的情況.
一元二次方程ax²+bx+c=0(a≠0)的根與△=b²-4ac有如下關系:
①當△>0時,方程有兩個不相等的兩個實數根;
②當△=0時,方程有兩個相等的兩個實數根;
③當△<0時,方程無實數根.
上面的結論反過來也成立.
特殊解法
開平方法,因式分解法(包括十字相乘法,雙十字相乘法,拆項和添減項法等)
因式分解法:
(1)因式分解法解一元二次方程的意義
因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.
因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那麼這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).
(2)因式分解法解一元二次方程的一般步驟:
①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.

㈥ 解一元二次方程的方法有哪些

一元二次方程的解法 一、知識要點: 一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基 礎,應引起同學們的重視。 一元二次方程的一般形式為:ax2+bx+c=0, (a≠0),它是只含一個未知數,並且未知數的最高次數是2 的整式方程。 解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解 法:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。 二、方法、例題精講: 1、直接開平方法: 直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的 方程,其解為x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以 此方程也可用直接開平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丟解) ∴x= ∴原方程的解為x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解為x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先將常數c移到方程右邊:ax2+bx=-c 將二次項系數化為1:x2+x=- 方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2 方程左邊成為一個完全平方式:(x+ )2= 當b2-4ac≥0時,x+ =± ∴x=(這就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:將常數項移到方程右邊 3x2-4x=2 將二次項系數化為1:x2-x= 方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接開平方得:x-=± ∴x= ∴原方程的解為x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項 系數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:將方程化為一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解為x1=,x2= . 4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓 兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個 根。這種解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學) (1)解:(x+3)(x-6)=-8 化簡整理得 x2-3x-10=0 (方程左邊為二次三項式,右邊為零) (x-5)(x+2)=0 (方程左邊分解因式) ∴x-5=0或x+2=0 (轉化成兩個一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法將方程左邊分解因式) ∴x=0或2x+3=0 (轉化成兩個一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小結: 一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般 形式,同時應使二次項系數化為正數。 直接開平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式 法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程 是否有解。 配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方 法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定系數法)。 例5.用適當的方法解下列方程。(選學) (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0 (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0 分析:(1)首先應觀察題目有無特點,不要盲目地先做乘法運算。觀察後發現,方程左邊可用平方差 公式分解因式,化成兩個一次因式的乘積。 (2)可用十字相乘法將方程左邊因式分解。 (3)化成一般形式後利用公式法解。 (4)把方程變形為 4x2-2(2m+5)x+(m+2)(m+3)=0,然後可利用十字相乘法因式分解。 (1)解:4(x+2)2-9(x-3)2=0 [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0 (5x-5)(-x+13)=0 5x-5=0或-x+13=0 ∴x1=1,x2=13 (2)解: x2+(2- )x+ -3=0 [x-(-3)](x-1)=0 x-(-3)=0或x-1=0 ∴x1=-3,x2=1 (3)解:x2-2 x=- x2-2 x+ =0 (先化成一般形式) △=(-2 )2-4 ×=12-8=4>0 ∴x= ∴x1=,x2= (4)解:4x2-4mx-10x+m2+5m+6=0 4x2-2(2m+5)x+(m+2)(m+3)=0 [2x-(m+2)][2x-(m+3)]=0 2x-(m+2)=0或2x-(m+3)=0 ∴x1= ,x2= 例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (選學) 分析:此方程如果先做乘方,乘法,合並同類項化成一般形式後再做將會比較繁瑣,仔細觀察題目,我 們發現如果把x+1和x-4分別看作一個整體,則方程左邊可用十字相乘法分解因式(實際上是運用換元的方 法) 解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0 即(5x-5)(2x-3)=0 ∴5(x-1)(2x-3)=0 (x-1)(2x-3)=0 ∴x-1=0或2x-3=0 ∴x1=1,x2=是原方程的解。 例7.用配方法解關於x的一元二次方程x2+px+q=0 解:x2+px+q=0可變形為 x2+px=-q (常數項移到方程右邊) x2+px+( )2=-q+()2 (方程兩邊都加上一次項系數一半的平方) (x+)2= (配方) 當p2-4q≥0時,≥0(必須對p2-4q進行分類討論) ∴x=- ±= ∴x1= ,x2= 當p2-4q<0時,<0此時原方程無實根。 說明:本題是含有字母系數的方程,題目中對p, q沒有附加條件,因此在解題過程中應隨時注意對字母 取值的要求,必要時進行分類討論。 練習: (一)用適當的方法解下列方程: 1. 6x2-x-2=0 2. (x+5)(x-5)=3 3. x2-x=0 4. x2-4x+4=0 5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0 (二)解下列關於x的方程 1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0 練習參考答案: (一)1.x1=- ,x2= 2.x1=2,x2=-2 3.x1=0,x2= 4.x1=x2=2 5.x1=x2= 6.解:(把2x+3看作一個整體,將方程左邊分解因式) [(2x+3)+6][(2x+3)-1]=0 即(2x+9)(2x+2)=0 ∴2x+9=0或2x+2=0 ∴x1=-,x2=-1是原方程的解。 (二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0 [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0 ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0 ∴x1= +b,x2= -b是 ∴x1= a,x2=a是 原方程的解。 原方程的解。 測試 選擇題 1.方程x(x-5)=5(x-5)的根是( ) A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5 2.多項式a2+4a-10的值等於11,則a的值為( )。 A、3或7 B、-3或7 C、3或-7 D、-3或-7 3.若一元二次方程ax2+bx+c=0中的二次項系數,一次項系數和常數項之和等於零,那麼方程必有一個 根是( )。 A、0 B、1 C、-1 D、±1 4. 一元二次方程ax2+bx+c=0有一個根是零的條件為( )。 A、b≠0且c=0 B、b=0且c≠0 C、b=0且c=0 D、c=0 5. 方程x2-3x=10的兩個根是( )。 A、-2,5 B、2,-5 C、2,5 D、-2,-5 6. 方程x2-3x+3=0的解是( )。 A、 B、 C、 D、無實根 7. 方程2x2-0.15=0的解是( )。 A、x= B、x=- C、x1=0.27, x2=-0.27 D、x1=, x2=- 8. 方程x2-x-4=0左邊配成一個完全平方式後,所得的方程是( )。 A、(x-)2= B、(x- )2=- C、(x- )2= D、以上答案都不對 9. 已知一元二次方程x2-2x-m=0,用配方法解該方程配方後的方程是( )。 A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1 答案與解析 答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D 解析: 1.分析:移項得:(x-5)2=0,則x1=x2=5, 注意:方程兩邊不要輕易除以一個整式,另外一元二次方程有實數根,一定是兩個。 2.分析:依題意得:a2+4a-10=11, 解得 a=3或a=-7. 3.分析:依題意:有a+b+c=0, 方程左側為a+b+c, 且具僅有x=1時, ax2+bx+c=a+b+c,意味著當x=1 時,方程成立,則必有根為x=1。 4.分析:一元二次方程 ax2+bx+c=0若有一個根為零, 則ax2+bx+c必存在因式x,則有且僅有c=0時,存在公因式x,所以 c=0. 另外,還可以將x=0代入,得c=0,更簡單! 5.分析:原方程變為 x2-3x-10=0, 則(x-5)(x+2)=0 x-5=0 或x+2=0 x1=5, x2=-2. 6.分析:Δ=9-4×3=-3<0,則原方程無實根。 7.分析:2x2=0.15 x2= x=± 注意根式的化簡,並注意直接開平方時,不要丟根。 8.分析:兩邊乘以3得:x2-3x-12=0,然後按照一次項系數配方,x2-3x+(-)2=12+(- )2, 整理為:(x-)2= 方程可以利用等式性質變形,並且 x2-bx配方時,配方項為一次項系數-b的一半的平方。 9.分析:x2-2x=m, 則 x2-2x+1=m+1 則(x-1)2=m+1. 中考解析 考題評析 1.(甘肅省)方程的根是( ) (A) (B) (C) 或(D) 或 評析:因一元二次方程有兩個根,所以用排除法,排除A、B選項,再用驗證法在C、D選項中選出正確 選項。也可以用因式分解的方法解此方程求出結果對照選項也可以。選項A、B是只考慮了一方面忘記了一元 二次方程是兩個根,所以是錯誤的,而選項D中x=-1,不能使方程左右相等,所以也是錯誤的。正確選項為 C。 另外常有同學在方程的兩邊同時除以一個整式,使得方程丟根,這種錯誤要避免。 2.(吉林省)一元二次方程的根是__________。 評析:思路,根據方程的特點運用因式分解法,或公式法求解即可。 3.(遼寧省)方程的根為( ) (A)0 (B)–1 (C)0,–1 (D)0,1 評析:思路:因方程為一元二次方程,所以有兩個實根,用排除法和驗證法可選出正確選項為C,而A、 B兩選項只有一個根。D選項一個數不是方程的根。另外可以用直接求方程根的方法。 4.(河南省)已知x的二次方程的一個根是–2,那麼k=__________。 評析:k=4.將x=-2代入到原方程中去,構造成關於k的一元二次方程,然後求解。 5.(西安市)用直接開平方法解方程(x-3)2=8得方程的根為( ) (A)x=3+2 (B)x=3-2 (C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2 評析:用解方程的方法直接求解即可,也可不計算,利用一元二次方程有解,則必有兩解及8的平方 根,即可選出答案。 課外拓展 一元二次方程 一元二次方程(quadratic equation of one variable)是指含有一個未知數且未知數的最高次項是二 次的整式方程。 一般形式為 ax2+bx+c=0, (a≠0) 在公元前兩千年左右,一元二次方程及其解法已出現於古巴比倫人的泥板文書中:求出一個數使它與它 的倒數之和等於 一個已給數,即求出這樣的x與,使 x=1, x+ =b, x2-bx+1=0, 他們做出( )2;再做出 ,然後得出解答:+ 及 - 。可見巴比倫人已知道一元二次 方程的求根公式。但他們當時並不接受 負數,所以負根是略而不提的。 埃及的紙草文書中也涉及到最簡單的二次方程,例如:ax2=b。 在公元前4、5世紀時,我國已掌握了一元二次方程的求根公式。 希臘的丟番圖(246-330)卻只取二次方程的一個正根,即使遇到兩個都是正根的情況,他亦只取其中 之一。 公元628年,從印度的婆羅摩笈多寫成的《婆羅摩修正體系》中,得到二次方程x2+px+q=0的一個求根公 式。 在阿拉伯阿爾.花拉子米的《代數學》中討論到方程的解法,解出了一次、二次方程,其中涉及到六種 不同的形式,令 a、b、c為正數,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成 不同形式作討論,是依照丟番圖的做法。阿爾.花拉子米除了給出二次方程的幾種特殊解法外,還第一 次 給出二次方程的一般解法,承認方程有兩個根,並有無理根存在,但卻未有虛根的認識。十六世紀義大利的 數學家們為了解三次方程而開始應用復數根。 韋達(1540-1603)除已知一元方程在復數范圍內恆有解外,還給出根與系數的關系。 我國《九章算術.勾股》章中的第二十題是通過求相當於 x2+34x-71000=0的正根而解決的.

㈦ 一元二次方程最簡單的解法

人教版九年級數學上冊一元二次方程不同解法

以愛教育孩子

08-31 20:49中小學教師
關注
在解一元二次方程時常用配方法,公式法和因式分解法,其中配方法和公式法適用於所有的一元二次方程,因式分解適合某些一元二次方程,且可以簡化解題過程,解一元二次方程的基本思路是降次,即把二次方程降次為一次方程,下面這題我們試用三種方法解題,試比較哪種更容易。

題目:x(x-2)+x-2=0

一、用配方法,解題過程如下圖:

二、用公式法,解題過程如下圖

三、用因式分解法,解題過程如下圖

通過以上三種方法解此題,可以看出公式法步驟較多,但學生喜歡用公式法,因為幾乎不用思考太多,只要代入公式就可以!用因式分解法是最簡單的,但是有個別學生看不出應該提取哪個公因式,這題還算是比較簡單的,書中有道練習題更是難倒一些學生,請看下題如何用因式分解法解題。

題目:3x(2x+1)=4x+2

解題過程如下圖

對於基礎不太好的學生,還真看不出來提取哪個公因式,如果沒有特別要求,也可以採用公式法解題,只是解題過程會復雜一些。

㈧ 一元二次方程公式法步驟

一元二次方程是中考的重點內容,也是初中數學學習的重點,解一元二次方程是重要的應用,不管是直接開平方,還是配方法、公式法、因式分解法等等方法解方程,解法各有不同,不同的依據,不同的適用范圍。

一元二次方程的解法

直接開平方法:依據的是平方根的意義,步驟是:將方程轉化為x=p或(mx+n)=p的形式;分三種情況降次求解:當p>0時;當p=0時;當p<0時,方程無實數根。需要注意的是:直接開平方法只適用於部分的一元二次方程,它適用的方程能轉化為x=p或(mx+n)=p的形式,其中p為常數,當p≥0時,開方時要取「正、負。

公式法:利用求根公式,直接求解。把一元二次方程的各系數代入求根公式,直接求出方程的解。一般步驟為:把方程化為一般形式;確定a、b、c的值;計算b-4ac的值;當b-4ac≥0時,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;當b-4ac<0時,方程沒有實數根。

㈨ 一元二次方程有什麼簡便的演算法嗎

公式法:
把方程變成 ax²+bx+c=0
然後用求根公式
x=[-b±√(b²-4ac)]/2a
湊方法:
將一元二次方程配成(x+m)²=n的形式,再利用直接開平方法求解的方法
因式分解法:
把方程轉化成(x+m)(x+n)=0的方式,則-m和-n是根,

一般適用於b和c之間有明顯的相加和相乘的關系b=m+n,c=m*n

㈩ 數學在初中解1元2次方程有哪幾種方法

1.分解因式法(可解部分一元二次方程)
因式分解法又分「提公因式法」、「公式法(又分「平方差公式」和「完全平方公式」兩種)」和「十字相乘法」.因式分解法是通過將方程左邊因式分解所得,因式分解的內容在八年級上學期學完.

1.解方程:x^2+2x+1=0
利用完全平方公式因式解得:(x+1﹚^2=0
解得:x1=
x2=-1
2.解方程x(x+1)-3(x+1)=0
利用提公因式法解得:(x-3)(x+1)=0

x-3=0

x+1=0

x1=3,x2=-1
3.解方程x^2-4=0
(x+2)(x-2)=0
x+2=0或x-2=0

x1=-2,x2=
2
十字相乘法公式:
x^2+(p+q)x+pq=(x+p)(x+q)
例:
1.ab+b^2+a-b-
2
=ab+a+b^2-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
2.公式法(可解全部一元二次方程)
求根公式
首先要通過Δ=b^2-4ac的根的判別式來判斷一元二次方程有幾個根
1.當Δ=b^2-4ac0時
x有兩個不相同的實數根
當判斷完成後,若方程有根可根屬於2、3兩種情況方程有根則可根據公式:x={-b±√(b^2-4ac)}/2a
來求得方程的根
3.配方法(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
把常數項移項得:x^2+2x=3
等式兩邊同時加1(構成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口訣
二次系數化為一
常數要往右邊移
一次系數一半方
兩邊加上最相當

閱讀全文

與算數學一元二次的簡便方法相關的資料

熱點內容
anica迷你手機設置日期方法 瀏覽:409
銅線和鋁線連接正確方法家用 瀏覽:118
德育如何掌握人際交往的方法 瀏覽:899
白兔的探視用說明方法怎麼描寫 瀏覽:111
中深孔采礦是什麼采礦方法 瀏覽:229
oppo顯示電量百分比在哪裡設置方法 瀏覽:927
電話銷售如何開發新客戶的方法 瀏覽:543
默認簡訊在哪裡設置方法 瀏覽:645
治療腳跟骨刺的好方法 瀏覽:914
風管漏風檢測方法 瀏覽:253
東風菱智車頂棉安裝方法 瀏覽:571
什麼方法能讓嬰兒去痰 瀏覽:258
羽毛球的使用方法 瀏覽:581
接球技術包括哪些技術方法 瀏覽:79
臉頰周圍長痘解決方法 瀏覽:73
水電瓶充電視頻教學方法 瀏覽:524
丙肝修復最佳方法 瀏覽:816
棗片的作用及食用方法 瀏覽:3
初中生如何復習的方法 瀏覽:306
聽神經瘤治療方法 瀏覽:293