導航:首頁 > 知識科普 > 干涉方法是分振幅法的有哪些

干涉方法是分振幅法的有哪些

發布時間:2022-12-22 01:55:17

『壹』 大學物理光的干涉 分振幅法和分波面法產生的光干涉分別是什麼

舉例子
分振幅:薄膜干涉 邁克爾遜干涉
分波前:雙縫干涉

『貳』 高中物理

定義
干涉現象是波動獨有的特徵,如果光真的是一種波,就必然會觀察到光的干涉現象.1801年,英國物理學家托馬斯·楊(1773—1829)在實驗室里成功地觀察到了光的干涉.
兩列或幾列光波在空間相遇時相互迭加,在某些區域始終加強,在另一些區域則始終削弱,形成穩定的強弱分布的現象。
[編輯本段]產生穩定干涉的條件:
只有兩列光波的頻率相同,位相差[1]恆定,振動方向一致的相干光源,才能產生光的干涉。由兩個普通獨立光源發出的光,不可能具有相同的頻率,更不可能存在固定的相差,因此,不能產生干涉現象。
[編輯本段]說明
①在交迭區域內各處的強度如果不完全相同而形成一定的強弱分布,顯示出固定的圖象叫做干涉圖樣。也即對空間某處而言,干涉迭加後的總發光強度不一定等於分光束的發光強度的迭加,而可能大於、等於或小於分光束的發光強度。
②通常的獨立光源是不相乾的。這是因為光的輻射一般是由原子的外層電子激發後自動回到正常狀態而產生的。由於輻射原子的能量損失,加上和周圍原子的相互作用,個別原子的輻射過程是雜亂無章而且常常中斷,持續對同甚短,即使在極度稀薄的氣體發光情況下,和周圍原子的相互作用已減至最弱,而單個原子輻射的持續時間也不超過10^-8秒。當某個原子輻射中斷後,受到激發又會重新輻射,但卻具有新韻初相位。這就是說,原子輻射的光波並不是一列連續不斷、振幅和頻率都不隨時間變化的簡諧波,即不是理想的單色光,而是如圖所示,在一段短暫時間內(如τ=10-8s)保持振幅和頻率近似不變,在空間表現為一段有限長度的簡諧波列。此外,不同原子輻射的光波波列的初相位之間也是沒有一定規則的。這些斷續、或長或短、初相位不規則的波列的總體,構成了宏觀的光波。由於原子輻射的這種復雜性,在不同瞬時迭加所得的干涉圖樣相互替換得這樣快和這樣地不規則,以致使通常的探測儀器無法探測這短暫的干涉現象。
盡管不同原子所發的光或同一原子在不同時刻所發的光是不相乾的,但實際的光干涉對光源的要求並不那麼苛刻,其光源的線度遠較原子的線度甚至光的波長都大得多,而且相干光也不是同一時刻發出的。這是因為實際的干涉現象是大量原子發光的宏觀統計平均結果,從微觀上來說,光子只能自己和自己干涉,不同的光子是不相乾的;但是,宏觀的干涉現象卻是大量光子各自干涉結果的統計平均效應。
③由於六十年代激光的問世,已使光源的相乾性大大提高,同時快速光電探測儀器的出現,探測儀器的時間響應常數縮短,以至可以觀察到兩個獨立光源的干涉現象。
1963年瑪格亞和曼德用時間常數為10^-8~10^-9秒的變像管拍攝了兩個獨立的紅寶石激光器發出的激光的干涉條紋。可目視分辨的干涉條紋有23條。
④相干光的獲得。對於普通的光源,保證相位差恆定成為實現干涉的關鍵。為了解決發光機制中初相位的無規則迅速變化和干涉條紋的形成要求相位差恆定的矛盾,可把同一原子所發出的光波分解成兩列或幾列,使各分光束經過不同的光程,然後相遇。這樣,盡管原始光源的初相位頻繁變化,分光束之間仍然可能有恆定的相位差,因此也可能產生干涉現象。
通常採用的方法有兩種:
a.分波陣面法。將點光源的波陣面分割為兩部分,使之分別通過兩個光具組,經反射、折射或衍射後交迭起來,在一定區域形成干涉。由於波陣面上任一部分都可看作新光源,而且同一波陣面的各個部分有相同的位相,所以這些被分離出來的部分波陣面可作為初相位相同的光源,不論點光源的位相改變得如何快,這些光源的初相位差卻是恆定的。楊氏雙縫、菲涅耳雙面鏡和洛埃鏡等都是這類分波陣面干涉裝置。
b.分振幅法。當一束光投射到兩種透明媒質的分界面上,光能一部分反射,另一部分折射。這方法叫做分振幅法。最簡單的分振幅干涉裝置是薄膜,它是利用透明薄膜的上下表面對入射光的依次反射,由這些反射光波在空間相遇而形成的干涉現象。由於薄膜的上下表面的反射光來自同一入射光的兩部分,只是經歷不同的路徑而有恆定的相位差,因此它們是相干光。另一種重要的分振幅干涉裝置,是邁克耳孫干涉儀。
⑤光的干涉現象是光的波動性的最直接、最有力的實驗證據。光的干涉現象是牛頓微粒模型根本無法解釋的,只有用波動說才能圓滿地加以解釋。由牛頓微粒模型可知,兩束光的微粒數應等於每束光的微粒之和,而光的干涉現象要說明的卻是微粒數有所改變,干涉相長處微粒數分布多;干涉相消處,粒子數比單獨一束光的還要少,甚至為零。這些問題都是微粒模型難以說明的。再從另一角度來看光的干涉現象,它也是對光的微粒模型的有力的否定。因為光總是以3×10^8m/s的速度在真空中傳播,不能用人為的方法來使光速作任何改變(除非在不同介質中,光速才有不同。但對於給定的一種介質,光速也是一定的)。干涉相消之點根本無光通過。那麼按照牛頓微粒模型,微粒應該總是以3×10^8m/s的速度作直線運動,在干涉相消處,這些光微粒到那裡去了呢?如果說兩束微粒流在這些點相遇時,由於碰撞而停止了,那麼停止了的(即速度不再是3×lO^8m/s,而是變為零)光微粒究竟是什麼東西呢?如果說是移到干涉相長之處去了,那麼又是什麼力量使它恰恰移到那裡去的呢?所有這些問題都是牛頓微粒模型根本無法回答的。然而波動說卻能令人信服地解釋它,並可由波在空間按一定的位相關系迭加來定量地導出干涉相長和相消的位置以及干涉圖樣的光強分布的函數解析式。
因此干涉現象是波的相干迭加的必然結果,它無可置疑地肯定了光的波動性,我們還可進一步把它推廣到其他現象中去,凡有強弱按一定分布的干涉圖樣出現的現象,都可作為該現象具有波動本性的最可靠最有力的實驗證據。
衍射(Diffraction)又稱為繞射,波遇到障礙物或小孔後通過散射繼續傳播的現象。衍射現象是波的特有現象,一切波都會發生衍射現象。
如果採用單色平行光,則衍射後將產生干涉結果。相干波在空間某處相遇後,因位相不同,相互之間產生干涉作用,引起相互加強或減弱的物理現象。 衍射的結果是產生明暗相間的衍射花紋,代表著衍射方向(角度)和強度。根據衍射花紋可以反過來推測光源和光柵的情況。 為了使光能產生明顯的偏向,必須使「光柵間隔」具有與光的波長相同的數量級。用於可見光譜的光柵每毫米要刻有約500條線 。
1913年,勞厄想到,如果晶體中的原子排列是有規則的,那麼晶體可以當作是X射線的三維衍射光柵[1]。X射線波長的數量級是10-8cm(應為nm) ,這與固體中的原子間距大致相同。果然試驗取得了成功,這就是最早的X射線衍射。 顯然,在X射線一定的情況下,根據衍射的花樣可以分析晶體的性質。但為此必須事先建立X射線衍射的方向和強度與晶體結構之間的對應關系。
[編輯本段]光的衍射
光在傳播路徑中,遇到不透明或透明的障礙物,繞過障礙物,產生偏離直線傳播的現象稱為光的衍射。
定義:光波遇到障礙物以後會或多或少地偏離幾何光學傳播定律的現象。
包括:單縫衍射、圓孔衍射、圓板衍射及泊松亮斑
光在傳播過程中,遇到障礙物或小孔(窄縫)時,它有離開直線路徑繞道障礙物陰影里去的現象。這種現象叫光的衍射。衍射時產生的明暗條紋或光環,叫衍射圖樣[1]。
產生衍射的條件是:由於光的波長很短,只有十分之幾微米,通常物體都比它大得多,但是當光射向一個針孔、一條狹縫、一根細絲時,可以清楚地看到光的衍射。用單色光照射時效果好一些,如果用復色光,則看到的衍射圖案是彩色的。
[編輯本段]惠更斯-菲涅爾原理
惠更斯提出,媒質上波陣面上的各點,都可以看成是發射子波的波源,其後任意時刻這些子波的包跡,就是該時刻新的波陣面。惠更斯-菲涅爾原理能定性地描述衍射現象中光的傳播問題。
菲涅爾充實了惠更斯原理,他提出波前上每個面元都可視為子波的波源,在空間某點P的振動是所有這些子波在該點產生的相干振動的疊加,稱為惠更斯-菲涅爾原理。
[編輯本段]衍射的類型
(1)菲涅爾衍射:光源和觀察點距障礙物為有限遠的衍射稱為菲涅爾衍射。
(2)夫琅和費衍射:光源和觀察點距障礙物為無限遠,即平行光的衍射為夫琅和費衍射。
單縫夫朗和費衍射
光的衍射 定義:光繞過障礙物繼續向前傳播的現象。
包括:單縫衍射、圓孔衍射、圓板衍射及泊松亮斑
光在傳播過程中,遇到障礙物或小孔(窄縫)時,它有離開直線路徑繞道障礙物陰影里去的現象。這種現象叫光的衍射。衍射時產生的明暗條紋或光環,叫衍射圖樣。
產生衍射的條件是:由於光的波長很短,只有十分之幾微米,通常物體都比它大得多,但是當光射向一個針孔、一條狹縫、一根細絲時,可以清楚地看到光的衍射。用單色光照射時效果好一些,如果用復色光,則看到的衍射圖案是彩色的。
光的衍射
1.衍射現象
光繞過障礙物偏離直線傳播路徑而進入陰影區里的現象,叫光的衍射。
光的衍射和光的干涉一樣證明了光具有波動性。
2.光產生明顯衍射的條件
小孔或障礙物的尺寸比光波的波長小,或者跟波長差不多時,光才能發生明顯的衍射現象。由於可見光波長范圍為4×10-7m至7.7×10-7m之間,所以日常生活中很少見到明顯的光的衍射現象。
任何障礙物都可以使光發生衍射現象,但發生明顯衍射現象的條件是「苛刻」的。
當障礙物的尺寸遠大於光波的波長時,光可看成沿直線傳播。注意,光的直線傳播只是一種近似的規律,當光的波長比孔或障礙物小得多時,光可看成沿直線傳播;在孔或障礙物可以跟波長相比,甚至比波長還要小時,衍射就十分明顯。
3.衍射的種類:
(1)狹縫衍射
讓激光發出的單色光照射到狹縫上,當狹縫由很寬逐漸減小,在光屏上出現的現象怎樣?
當狹縫很寬時,縫的寬度遠遠大於光的波長,衍射現象極不明顯,光沿直線傳播,在屏上產生一條跟縫寬度相當的亮線;但當縫的寬度調到很窄,可以跟光波相比擬時,光通過縫後就明顯偏離了直線傳播方向,照射到屏上相當寬的地方,並且出現了明暗相間的衍射條紋,紋縫越小,衍射范圍越大,衍射條紋越寬,。但亮度越來越暗。
試驗:可以用游標卡尺調整到肉眼可辨認的最小距離,再通過此縫看光源
(2)小孔衍射
當孔半徑較大時,光沿直線傳播,在屏上得到一個按直線傳播計算出來一樣大小的亮光圓斑;減小孔的半徑,屏上將出現按直線傳播計算出來的倒立的光源的像,即小孔成像;繼續減小孔的半徑,屏上將出現明暗相間的圓形衍射光環。

『叄』 日常生活中常見的薄膜干涉有哪些

1、一個肥皂泡就是一個薄膜,但是它的表面厚度不均勻。而光是由紅色,綠色,和藍色光波組成的,不同的顏色就從表面上反射出來。

2、在陽光下洗衣服時,盆里的肥皂或洗衣粉泡上會出現各種彩色花紋,並且隨泡的大小變化,花紋的形狀和顏色也不斷的變化。

3、炎熱的夏天,雨過天晴,柏油路的積水面上浮著一層油膜會呈現出五顏六色。

4、用手把兩片無色透明的玻璃片捏在一起,陽光下也能看到彩色花紋。

(3)干涉方法是分振幅法的有哪些擴展閱讀

作用——

暗紋對應不同的傾角,這種干涉稱做等傾干涉,等傾干涉一般採用擴展光源,並通過透鏡觀察。

利用薄膜干涉還可以製造增透膜。在照相機、放映機的透鏡表面上塗上一層透明薄膜,能夠減少光的反射,增加光的透射,這種薄膜叫做增透膜。平常在照相機鏡頭上有一層反射呈藍紫色的膜就是增透膜。

同理如果增加光的反射成為增反膜,用於汽車玻璃貼膜等。可以用於檢測平面是否平整。

『肆』 什麼是光的干涉產生光的干涉現象的條件是什麼

光的干涉現象 :

它是指因兩束光波相遇而引起光的強度重新分布的現象。

條件:

兩束光波相遇產生干涉現象的必要條件是:

①頻率相同;

②光矢量(即電場強度矢量E)的振動方向相同;

③在相遇處兩束光的相位差恆定。

為了實現相干光的干涉,還應注意:兩相干光至相遇點的光程差不能太大,以不超過波列長度(即相干長度)為限;兩相干光的振幅不能相差太大,以保證干涉條紋明顯可辨。

拓展資料

一、產生相干光波

1、分波陣面法

分波陣面法。將點光源的波陣面分割為兩部分,使之分別通過兩個光具組,經反射、折射或衍射後交迭起來,在一定區域形成干涉。由於波陣面上任一部分都可看作新光源,而且同一波陣面的各個部分有相同的位相,所以這些被分離出來的部分波陣面可作為初相位相同的光源,不論點光源的位相改變得如何快,這些光源的初相位差卻是恆定的。楊氏雙縫、菲涅耳雙面鏡和洛埃鏡等都是這類分波陣面干涉裝置。

2、分振幅法

分振幅法。當一束光投射到兩種透明媒質的分界面上,光能一部分反射,另一部分折射。這方法叫做分振幅法。最簡單的分振幅干涉裝置是薄膜,它是利用透明薄膜的上下表面對入射光的依次反射,由這些反射光波在空間相遇而形成的干涉現象。由於薄膜的上下表面的反射光來自同一入射光的兩部分,只是經歷不同的路徑而有恆定的相位差,因此它們是相干光。另一種重要的分振幅干涉裝置,是邁克耳孫干涉儀。

3、干涉條紋

在各種干涉條紋中,等傾干涉條紋和等厚干涉條紋是比較典型的兩種。以上假定光源發出的是單色光(或者用濾光片從光源所發的許多波長的光中取出某一單色光)。當光源發出的許多波長的光皆發生干涉時,會形成彩色干涉條紋(見白光條紋)。

二、干涉分類

1、雙光波干涉

即兩個成員波的干涉。楊氏雙孔和雙縫干涉、菲涅耳雙鏡干涉及牛頓環等屬於此類。雙光波干涉形成的明暗條紋都不是細銳的,而是光強分布作正弦式的變化,這就是雙光波干涉的特徵。多光波干涉則可形成細銳的條紋。

2、多光波干涉

即多於兩個成員波的干涉。陸末-格爾克片干涉屬於此類。圖中A為平行平板玻璃,光的干涉一端開有傾斜的入射窗BC。從S發出的源波經BC進入玻璃片後在其上、下表面間多次反射。每次在上表面反射時,皆同時有一波折射入空氣中。所有各次折射入空氣中的波就是從同一源波按分振幅方式造成的一組成員波。在透鏡L 的焦平面Π上觀測干涉條紋。相鄰兩波在P點的位相差為式中λ 為光波在真空中的波長,n為玻璃的折射率,t為玻璃片厚度,β 為玻璃片內的光程輔助線與表面法線的夾角。在接收面光強分布的條紋十分細銳,這是多光波干涉的特徵。

3、偏振光的干涉

在以上所舉的干涉中,各成員波在考察點處可認為偏振方向大體一致。當參與干涉的兩個成員波的偏振面夾有一定角(例如 90°)時,如何產生干涉見偏振光的干涉。

『伍』 什麼是牛頓環干涉

牛頓環干涉光的干涉現象是光波動性的基本特徵之一。 牛頓環干涉是屬於用分振幅的方法產生的定域干涉現象, 亦是典型的等厚干涉條紋。

牛頓環,又稱「牛頓圈」。在光學上,牛頓環是一個薄膜干涉現象。光的一種干涉圖樣,是一些明暗相間的同心圓環。

牛頓環現象是由平凸透鏡下凸面和平面透鏡的上平面所分別反射的光線產生干涉的結果。光線進入平凸透鏡到達凸面進入空氣時,一部分在該界面發生反射,另一部分透射後在下方的平面透鏡發生反射,並與前一束後一次反射是在空氣(光疏介質)—玻璃(光密介質)界面上發生的,反射光發生半波損失而與入射光反相。

牛頓環的直徑與透鏡的半徑成正比,透鏡半徑越大,環也越大。

牛頓環的直徑與波長成正比,波長越長,環越大。即紅色光的牛頓環大,藍色光的牛頓環小。

『陸』 劈尖干涉是分振幅干涉嗎

是等厚干涉、分振幅干涉的一種。劈尖上的干涉條紋是與傾斜方向垂直的。原理上就是同一束光在劈尖的上下兩個面上反射,反射光之間進行干涉。

與此對應的有分波陣面干涉,如著名的楊氏雙縫干涉。

『柒』 邁克爾遜干涉儀是利用什麼方法產生雙光束而實現干涉的

邁克爾遜干涉儀是利用分振幅法產生雙光束以實現干涉。通過調整該干涉儀,可以產生等厚干涉條紋,也可以產生等傾干涉條紋。

『捌』 關於光的衍射和和干涉,要掌握哪些知識點,我要全面點的

如果採用單色平行光,則衍射後將產生干涉結果。相干波在空間某處相遇後,因位相不同,相互之間產生干涉作用,引起相互加強或減弱的物理現象。 衍射的結果是產生明暗相間的衍射花紋,代表著衍射方向(角度)和強度。根據衍射花紋可以反過來推測光源和光柵的情況。 為了 衍射圖樣使光能產生明顯的偏向,必須使「光柵間隔」具有與光的波長相同的數量級。用於可見光譜的光柵每毫米要刻有約500條線 。
1913年,勞厄想到,如果晶體中的原子排列是有規則的,那麼晶體可以當作是X射線的三維衍射光柵。X射線波長的數量級是10^-8cm,這與固體中的原子間距大致相同。果然試驗取得了成功,這就是最早的X射線衍射。 顯然,在X射線一定的情況下,根據衍射的花樣可以分析晶體的性質。但為此必須事先建立X射線衍射的方向和強度與晶體結構之間的對應關系。
編輯本段
光的衍射

光在傳播路徑中,遇到不透明或透明的障礙物或者小孔(窄縫),繞過障礙物,產生偏離直線傳播的現象稱為光的衍射。衍射時產生的明暗條紋或光環,叫衍射圖樣。
定義:光波遇到障礙物以後會或多或少地偏離幾何光學傳播定律的現 衍射示意圖象。
包括:單縫衍射、圓孔衍射、圓板衍射及泊松亮斑
產生衍射的條件是:由於光的波長很短,只有十分之幾微米,通常物體都比它大得多,但是當光射向一個針孔、一條狹縫、一根細絲時,可以清楚地看到光的衍射。用單色光照射時效果好一些,如果用復色光,則看到的衍射圖案是彩色的。
任何障礙物都可以使光發生衍射現象,但發生明顯衍射現象的 菲涅爾衍射條件是「苛刻」的。
當障礙物的尺寸遠大於光波的波長時,光可看成沿直線傳播。注意,光的直線傳播只是一種近似的規律,當光的波長比孔或障礙物小得多時,光可看成沿直線傳播;在孔或障礙物可以跟波長相比,甚至比波長還要小時,衍射就十分明顯。由於可見光波長范圍為4×10-7m至7.7×10-7m之間,所以日常生活中很少見到明顯的光的衍射現象。
編輯本段
惠更斯-菲涅爾原理

惠更斯提出,媒質上波陣面上的各點,都可以看成是發射子波的波源,其後任意時刻這些子波的波跡,就是該時刻新的波陣面。惠更斯-菲涅爾原理能定性地描述衍射現象中光的傳播問題。 衍射菲涅爾充實了惠更斯原理,他提出波前上每個面元都可視為子波的波源,在空間某點P的振動是所有這些子波在該點產生的相干振動的疊加,稱為惠更斯-菲涅爾原理。
編輯本段
衍射的種類

(1)菲涅爾衍射:光源和觀察點距障礙物為有限遠的衍射稱為菲涅爾衍射。 單縫夫朗和費衍射(2)夫琅和費衍射:光源和觀察點距障礙物為無限遠,即平行光的衍射為夫琅和費衍射。
包括:單縫衍射、圓孔衍射、圓板衍射及泊松亮斑
(1)狹縫衍射
讓激光發出的單色光照射到狹縫上,當狹縫由很寬逐漸減小,在光屏上出現的現象怎樣?
當狹縫很寬時,縫的寬度遠遠大於光的波長,衍射現象極不明顯,光沿直線傳播,在屏上產生一條跟縫寬度相當的亮線;但當縫的寬度調到很窄,可以跟光波相比擬時,光通過縫後就明顯偏離了直線傳播方向,照射到屏上相當寬的地方,並且出現了明暗相間的衍射條紋,狹縫越小,衍射范圍越大,衍射條紋越寬,。但亮度越來越暗。
試驗:可以用游標卡尺調整到肉眼可辨認的最小距離,再通過此縫看 衍射儀光源
(2)小孔衍射
當孔半徑較大時,光沿直線傳播,在屏上得到一個按直線傳播計算出來一樣大小的亮光圓斑;減小孔的半徑,屏上將出現按直線傳播計算出來的倒立的光源的像,即小孔成像;繼續減小孔的半徑,屏上將出現明暗相間的圓形衍射光環。
編輯本段
衍射的幾何理論

應用射線概念分析電磁波衍射特性的漸近理論,簡稱 GTD。幾何理論是單色波場方程的解在頻率趨於無限時的極限,因而也是適合於高頻情形的漸近解,而這種理論的基本思想是把均勻平面波在無限平界面上的反射和折射、在半無限楔形導體邊緣上的衍射和沿圓柱導體表面的爬行波嚴格解的漸近式,應用於從點源發出的球面波或線源發出的柱面波在圓滑界面上的反射和折射、在弧形導體刃口上的衍射和沿導體凸表面的爬行,並把它作為問題的0階段近解。
衍射的幾何理論
② 反射系數、衍射系數和爬行線的衰減系數採用無限直刃和無限長圓柱上嚴格解的漸近結果。
③ 投射波、反射波和衍射波的場強各與其主曲率半徑的幾何平均數成反比,而確定反射波和衍射波曲率矩陣的原則是相位匹配。所謂相位匹配,如圖3,設A是衍射點,A┡是其鄰點,則,A、A┡兩點所在的衍射波面的相位差與 A、A┡兩點所在的投射波面的相位差應當相同。
衍射的幾何理論最早是由J.B.凱勒於1957年提出來的,後來經許多人的工作而日趨完善,在處理很多異形物體的散射問題以及用數值計算解散射和衍射問題中得到應用。但是,因為嚴格解的漸近式在陰影區與照明區的過渡區域不能成立,所以在這個區域,GTD 不能應用,為了彌補這一缺陷,J.波斯馬等人後來提出一致漸近理論 (UAT)。這個理論的基本思想是,給投射波乘以人為因子,使這因子在照明區內近於1而在陰影區內近於0,在過渡區內則隨著場點趨近於照明區邊界而無限增大。將這乘了因子的投射波與衍射波的漸近式相加能一致連續,這種理論也得到了廣泛的應用。但是,它的基礎僅僅是一個估值(ansatz),而且在刃口以及其他焦散線附近,它和 GTD同樣不能應用。然而射線理論有很多優點,人們仍在探索改進的途徑。
若干個光波(成員波)相遇時產生的光強分布不等於由各個成員波單獨造成的光強分布之和,而出現明暗相間的現象。例如在楊氏雙孔干涉(見楊氏干涉實驗)中,由每一小孔H1或H2出來的子波就是一個成員波,當孔甚小時,由孔H1出來的成員波單獨造成的光強分布 I1(x)在相當大的范圍內 干涉圖樣大致是均勻的;單由從孔H2出來的成員波造成的光強分布I2(x)亦如此。二者之和仍為大致均勻的分布。而由兩個成員波共同造成的光強分布I(x),則明暗隨位置x的變化十分顯著,顯然不等於I┡(x)。
每個成員波單獨造成大致均勻的光強分布,這相當於要求各成員波本身皆沒有明顯的衍射,因為衍射也會造成明暗相間的條紋(見光的衍射)。所以,當若干成員波在空間某一區域相遇而發生干涉時,應該是指在該區域中可以不考慮每個成員波的衍射。
應注意,前面所說的光強並不是光場強度(正比於振幅平方)的瞬時值,而是在某一段時間間隔Δt內光場強度的平均值或積分值;Δt的長短視檢測手段或裝置的性能而定。例如,人眼觀察時,Δt就是視覺暫留時間;用膠片拍攝時,Δt則為曝光時間。
干涉現象通常表現為光強在空間作相當穩定的明暗相間條紋分布;有時則表現為,當干涉裝置的某一參量隨時間改變時,在某一固定點處接收到的光強按一定規律作強弱交替的變化。
光的干涉現象的發現在歷史上對於由光的微粒說到光的波動說的演進起了不可磨滅的作用。1801年,T.楊提出了干涉原理並首先做出了雙狹縫干涉實驗,同時還對薄膜形成的彩色作了解釋。1811年,D.F.J.阿喇戈首先研究了偏振光的干涉現象。現代,光的干涉已經廣泛地用於精密計量、天文觀測、光彈性應力分析、光學精密加工中的自動控制等許多領域。
編輯本段
產生條件

綜述
只有兩列光波的頻率相同,相位差[1]恆定,振動方向一致的相干光源,才能產生光的干涉。由兩個普通獨立光源發出的光,不可能具有相同的頻率,更不可能存在固定的相差,因此,不能產生干涉現象。
具體方法
為使合成波場的光強分布在一段時間間隔Δt內穩定,要求:①各成員波的頻率v(因而波長λ )相同;②任兩成員波的初位相之差在Δt內保持不變。條件②意味著,若干個通常獨立發光的光源,即使它們發出相同頻率的光,這些光相遇時也不會出現干涉現象。原因在於:通常光源發出的光是初位相作無規 光的干涉分布的大量波列,每一波列持續的時間不超過10秒的數量級,就是說,每隔10秒左右,波的初位相就要作一次隨機的改變。而且,任何兩個獨立光源發出波列的初位相又是統計無關的。由此可以想像,當這些獨立光源發出的波相遇時,只在極其短暫的時間內產生一幅確定的條紋圖樣,而每過10秒左右,就換成另一幅圖樣,迄今尚無任何檢測或記錄裝置能夠跟上如此急劇的變化,因而觀測到的乃是上述大量圖樣的平均效果,即均勻的光強分布而非明暗相間的條紋。不過,近代特製的激光器已經做到發出的波列長達數十公里,亦即波列持續時間為10秒的數量級。因此,可以說,若採用時間分辨本領Δt比10秒更短的檢測器(這樣的裝置是可以做到的),則兩個同頻率的獨立激光器發出的光波的干涉,也是能夠觀察到的。另外,以雙波干涉為例還要求:③兩波的振幅不得相差懸殊;④在疊加點兩波的偏振面須大體一致。
當條件③不滿足時,原則上雖然仍能產生干涉條紋,但條紋之明暗區別甚微,干涉現象很不明顯。條件④要求之所以必要是因為,當兩個光波的偏振面相互垂直時,無論二者有任何值的固定位相差,合成場的光強都是同一數值,不會表現出明暗交替(欲觀察明暗交替,須藉助於偏振元件)。
以上四點即為通常所說的相干條件。滿足這些條件的兩個或多個光源或光波,稱為相干光源或相干光波。
編輯本段
產生相干光波

綜述
由一般光源獲得一組相干光波的辦法是,藉助於一定的光學裝置(干涉裝置)將一個光源發出的光波(源波)分為若干個波。由於這些波來自同一源波,所以,當源波的初位相改變時,各成員波的初位相都隨之作相同的改變,從而它們之間的位相差保持不變。同時,各成員波的偏振方向亦與源波一致,因而在考察點它們的偏振方向也大體相同。一般的干涉裝置又可使各成員波的振幅不太懸殊。於是,當光源發出單一頻率的光時,上述四個條件皆能滿足,從而出現干涉現象。當光源發出許多頻率成分時,每一單頻成分(對應於一定的顏色)會產生相應的一組條紋,這些條紋交疊起來就呈現彩色條紋。
分波陣面法
分波陣面法。將點光源的波陣面分割為兩部分,使之分別通過兩個光具組,經反射、折射或衍射後交迭起來,在一定區域形成干涉。由於波陣面上任一部分都可看作新光源,而且同一波陣面的各個部 光的干涉分有相同的位相,所以這些被分離出來的部分波陣面可作為初相位相同的光源,不論點光源的位相改變得如何快,這些光源的初相位差卻是恆定的。楊氏雙縫、菲涅耳雙面鏡和洛埃鏡等都是這類分波陣面干涉裝置。
分振幅法
分振幅法。當一束光投射到兩種透明媒質的分界面上,光能一部分反射,另一部分折射。這方法叫做分振幅法。最簡單的分振幅干涉裝置是薄膜,它是利用透明薄膜的上下表面對入射光的依次反射,由這些反射光波在空間相遇而形成的干涉現象。由於薄膜的上下表面的反射光來自同一入射光的兩部分,只是經歷不同的路徑而有恆定的相位差,因此它們是相干光。另一種重要的分振幅干涉裝置,是邁克耳孫干涉儀。
編輯本段
干涉條紋

在各種干涉條紋中,等傾干涉條紋和等厚干涉條紋是比較典型的兩種。以上假定光源發出的是單色光(或者用濾光片從光源所發的許多波長的光中取出某一單色光)。當光源發出的許多波長的光皆發生干涉時,會形成彩色干涉條紋(見白光條紋)。
編輯本段
干涉分類

雙光波干涉
即兩個成員波的干涉。楊氏雙孔和雙縫干涉、菲涅耳雙鏡干涉及牛頓環等屬於此類。雙光波干涉形成的明暗條紋都不是細銳的,而是光強分布作正弦式的變化,這就是雙光波干涉的特徵。多光波干涉則可形成細銳的條紋。
多光波干涉
即多於兩個成員波的干涉。陸末-格爾克片干涉屬於此類。圖中A為平行平板玻璃,一端開有傾斜的入射窗BC。從S發出的源波經BC進入玻璃片後在其上、下表面間多次反射。每次在上表面反射時,皆同時有一波折射入空氣中。所有各次折射入空氣中的波就是從同一源波按分振幅方式造成的一組成員波。在透鏡L 的焦平面Π上觀測干涉條紋。相鄰兩波在P點的位相差為 公式1式中λ 為光波在真空中的波長,n為玻璃的折射率,t為玻璃片厚度,β 為玻璃片內的光程輔助線與表面法線的夾角。在接收面光強分布的條紋十分細銳,這是多光波干涉的特徵。
偏振光的干涉
在以上所舉的干涉中,各成員波在考察點處可認為偏振方向大體一致。當參與干涉的兩個成員波的偏振面夾有一定角(例如 90°)時,如何產生干涉見偏振光的干涉。
編輯本段
應用

根據光的干涉原理可以進行長度的精密計量。例如用邁克耳孫干涉儀校準塊規的長度。其方法如下,用單色性很好的激光束(波長為 λ)作為光源,並在邁克耳孫干涉儀的可動鏡臂上裝有精密的觸頭,先使觸頭接觸塊規的一端,然後撤去塊規,令可動鏡移動。這時,每移動λ/2,兩臂中光路的光程差就增加λ,從而置於干涉視場中心的檢測器就輸出一次強弱變化,使記數器的數字增加 1。直到觸頭接觸基面(塊規的另一端面原來放在基面上)為止。若記數器總共增加的數為n,則測得塊規的長度為
公式2精密的裝置可以把n精確到±0.1以下,於是測量長度的誤差不超過±λ/20。
利用干涉現象還可以檢測加工過程中工件表面的幾何形狀與設計要求之間的微小差異。例如要加工一個平面,則可首先用精密工藝製造一個精度很高的平面玻璃板(樣板)。使樣板的平面與待測件的表面接觸,於是此二表面間形成一層空氣薄膜。若待測表面確是很好的平面,則空氣膜到處等厚或者是規則的楔形。當光照射時,薄膜形成的干涉光強呈一片均勻或是平行、等間隔的直條紋。如果待測表面在某些局域偏離了平面,則此處的干涉光強與別處不同或者干涉條紋在該處呈現彎曲。從條紋變異的情況可以推知待測表面偏離平面的情況。偏離量為波長的若干分之一是很容易觀察得到的。
編輯本段
說明

①在交迭區域內各處的強度如果不完全相同而形成一定的強弱分布,顯示出固定的圖象叫做干涉圖樣。也即對空間某處而言,干涉迭加後的總發光強度不一定等於分光束的發光強度的迭加,而可能大於、等於或小於分光束的發光強度,這是由波的疊加原理決定的(即波峰和波峰相加為兩倍的波峰)。
②通常的獨立光源是不相乾的。這是因為光的輻射一般是由原子的外層電子激發後自動回到正常狀態而產生的。由於輻射原子的能量損失,加上和周圍原子的相互作用,個別原子的輻射過程是雜亂無章而且常常中斷,持續對同甚短,即使在極度稀薄的氣體發光情況下,和周圍原子的相互作用已減至最弱,而單個原子輻射的持續時間也不超過10^-8秒。當某個原子輻射中斷後,受到激發又會重新輻射,但卻具有新韻初相位。這就是說,原子輻射的光波並不是一列連續不斷、振幅和頻率都不隨時間變化的簡諧波,即不是理想的單色光,而是如圖所示,在一段短暫時間內(如τ=10-8s)保持振幅和頻率近似不變,在空間表現為一段有限長度的簡諧波列。此外,不同原子輻射的光波波列的初相位之間也是沒有一定規則的。這些斷續、或長或短、初相位不規則的波列的總體,構成了宏觀的光波。由於原子輻射的這種復雜性,在不同瞬時迭加所得的干涉圖樣相互替換得這樣快和這樣地不規則,以致使通常的探測儀器無法探測 光的干涉這短暫的干涉現象。
盡管不同原子所發的光或同一原子在不同時刻所發的光是不相乾的,但實際的光干涉對光源的要求並不那麼苛刻,其光源的線度遠較原子的線度甚至光的波長都大得多,而且相干光也不是同一時刻發出的。這是因為實際的干涉現象是大量原子發光的宏觀統計平均結果,從微觀上來說,光子只能自己和自己干涉,不同的光子是不相乾的;但是,宏觀的干涉現象卻是大量光子各自干涉結果的統計平均效應。
③由於六十年代激光的問世,已使光源的相乾性大大提高,同時快速光電探測儀器的出現,探測儀器的時間響應常數縮短,以至可以觀察到兩個獨立光源的干涉現象。另,在現在的高中課本中,已經有光的干涉實驗,用激光或者同一燈泡通過雙縫進行實驗).
1963年瑪格亞和曼德用時間常數為10^-8~10^-9秒的變像管拍攝了兩個獨立的紅寶石激光器發出的激光的干涉條紋。可目視分辨的干涉條紋有23條。
④相干光的獲得。對於普通的光源,保證相位差恆定成為實現干涉的關鍵。為了解決發光機制中初相位的無規則迅速變化和干涉條紋的形成要求相位差恆定的矛盾,可把同一原子所發出的光波分解成兩列或幾列,使各分光束經過不同的光程,然後相遇。這樣,盡管原始光源的初相位頻繁變化,分光束之間仍然可能有恆定的相位差,因此也可能產生干涉現象。
⑤光的干涉現象是光的波動性的最直接、最有力的實驗證據。光的干涉現象是牛頓微粒模型根本無法解釋的,只有用波動說才能圓滿地加以解釋。由牛頓微粒模型可知,兩束光的微粒數應等於每束光的微粒之和,而光的干涉現象要說明的卻是微粒數有所改變,干涉相長處微粒數分布多;干涉相消處,粒子數比單獨一束光的還要少,甚至為零。這些問題都是微粒模型難以說明的。再從另一角度來看光的干涉現象,它也是對光的微粒模型的有力的否定。因為光總是以3×10^8m/s的速度在真空中傳播,不能用人為的方法來使光速作任何改變(除非在不同介質中,光速才有不同。但對於給定的一種介質,光速也是一定的)。干涉相消之點根本無光通過。那麼按照牛頓微粒模型,微粒應該總是以3×10^8m/s的速度作直線運動,在干涉相消處,這些光微粒到那裡去了呢?如果說兩束微粒流在這些點相遇時,由於碰撞而停止了,那麼停止了的(即速度不再是3×lO^8m/s,而是變為零)光微粒究竟是什麼東西呢?如果說是移到干涉相長之處去了,那麼又是什麼力量使它恰恰移到那裡去的呢?所有這些問題都是牛頓微粒模型根本無法回答的。然而波動說卻能令人信服地解釋它,並可由波在空間按一定的位相關系迭加來定量地導出干涉相長和相消的位置以及干涉圖樣的光強分布的函數解析式。
因此干涉現象是波的相干迭加的必然結果,它無可置疑地肯定了光的波動性,我們還可進一步把它推廣到其他現象中去,凡有強弱按一定分布的干涉圖樣出現的現象,都可作為該現象具有波動本性的最可靠最有力的實驗證據。
編輯本段
參考書目

M.玻恩、E.沃耳夫著,楊葭蓀等譯校:《光學原理》,上冊;黃樂天等譯校:《光學原理》,下冊,科學出版社,北京,1978,1981。(M.Born and E. Wolf,Principles of Optics,5th ed.,Pergamon Press,Oxford,1975.) F. A. Jenkins and H. E. White,Fundamentals of Optics,4th ed.,McGraw-Hill,Kogakusha,1976.

『玖』 等厚干涉中獲得相干光的方法叫分振幅法,為什麼叫這個名字

分振幅法是在透明介質表面上通過反射和透射分離出兩束相干光,各自得到的光強比先前小了,故也可以說是振幅被分割了。等厚干涉就是如此。

『拾』 分波前法和分振幅法的區別

分波前法和分振幅法的區別:含義不同,本質不同。

一、含義不同:

分振幅法是在透明介質表面上通過反射和透射分離出兩束相干光,各自得到的光強比先前小了,故也可以說是振幅被分割了。等厚干涉就是如此。波前法是一種利用較小內存求解大型線性方程組的演算法。

二、本質不同:

波前法本質是分塊高斯消去法的更靈活應用,它不形成體系總剛度矩陣,而只是形成一個波前內相關單元的「分塊剛度陣」,分解後即記入硬碟;依次波前在整個結構中遍歷即完成體系的分塊總剛的形成和消元,回代時逆序進行即可。

洛埃鏡觀測的是干涉條紋,有振幅損失,雖然有一些,但是不影響干涉條紋的位置。無非是明條紋和暗條紋的對比度的強弱問題了,而主要要體現的則是半波損失的問題,這個和振幅是沒有關系的。

最簡單的分振幅干涉

裝置是薄膜,它是利用透明薄膜的上下表面對入射光的依次反射,由這些反射光波在空間相遇而形成的干涉現象。由於薄膜的上下表面的反射光來自同一入射光的兩部分,只是經歷不同的路徑而有恆定的相位差,因此它們是相干光。另一種重要的分振幅干涉裝置,是邁克耳孫干涉儀。

閱讀全文

與干涉方法是分振幅法的有哪些相關的資料

熱點內容
開啟手機功能的方法 瀏覽:322
如何了解消費者調查的方法 瀏覽:620
skf激光對中儀使用方法 瀏覽:170
哪裡有下奶的土方法 瀏覽:647
樁基檢測方法及數量表 瀏覽:453
怎麼清理微信在電腦里的緩存在哪裡設置方法 瀏覽:212
簡易汽車手機支架安裝方法 瀏覽:237
正壓送風口安裝方法 瀏覽:513
手機都有什麼使用方法 瀏覽:402
迷你世界如何製作扁皮的方法 瀏覽:330
鍛煉翹臀的方法 瀏覽:102
玉米澱粉檢測方法 瀏覽:986
鎧甲肌肉鍛煉方法 瀏覽:227
諾特蘭德b族食用方法 瀏覽:26
折紙可愛玫瑰花簡單方法 瀏覽:172
榨菜種植方法百度網盤 瀏覽:257
vivo手機變遙控器的方法 瀏覽:861
拆盲袋的方法和步驟順序 瀏覽:508
小孩的數學教學方法 瀏覽:368
怎麼備份系統的方法 瀏覽:580