1. 初中數學常用思想方法有哪些
初中數學思想方法「思」是指學生思維。沒有思維,就發揮不了學生的主體作用。在思維方法指導時,應使學生注意:(1)多思、勤思,隨聽隨思。(2)深思,即追根溯源地思考,善於大膽提出問題(3)善思,由聽和觀察去聯想、猜想、歸納(4)樹立批評意識,學會反思。可以說「聽」是「思」的基礎,思是 聽 的深化,是學習方法的本質的內容,會思維才會學習。「記」是指學生課堂筆記。初一學生一般不會合理記筆記,通常是教師黑板上寫什麼學生就抄什麼,往往是用「記」代替「聽」和「思」。有的筆記雖然記得很全,但效果不是很好,因此在指導學生作筆記時應要求學生:(1)記筆記服從聽講,要掌握記錄時機;(2)記要點、記疑問、記解題思路和方法。使學生明確「記」是為「聽」和「思」服務的。掌握好這三者的關系,就能使課堂這一數學學習主要環節達到較完美的境界。課堂學習指導是學法中最重要的。同時還要結合不同的授課內容進行相應的學法指導。2數學思想方法一數集的每一次擴充都是解決實際問題和解決數學自身矛盾的需要。有理數概念的建立,有理數性質的介紹,有理數運演算法則的規定,這一切都為同學們進一步學習代數做了必要的准備。同學們在學習有理數一章時,希望大家要有意識地培養自己邏輯推理能力,使自己會觀察、比較、分析、綜合、抽象和概括,會用歸納和類比的方法進行推理。另外要特別重視提高運算能力,有過硬的運算基本功。為此,不僅能根據法則、運算規律、公式等正確地進行運算,而且理解運算的算理,能夠根據題目條件,使運算「合理、簡捷、准確」。為了解決用算術方法解應用題的局限性,人們想出用字母表示未知數,把問題中的相等關系平鋪直敘地用代數方程式表達出來。由於表示未知數的字母也是數,因此,它們也可以按照數的運算的通性、通法進行運算,從而求得未知數所應有的值。同學們要充分注意這一「歷史性」的突破。為此,不僅要熟練掌握含數字的算術的變形和計算,更要切實掌握好含字母的代數式(目前主要是整式)的變形和計算,解方程的基本方法和步驟,這一切都是為列方程解應用題而展開的。通過列方程解應用題的學習,體會如何把實際問題抽象成數學問題,用方程思想處理數學問題,形成用數學的意識,培養我們自己分析問題和解決問題的能力。3數學思想方法二升入初中如果再沿用小學的學習方法和方式,顯然無法適應。這時需要我們擺脫對老師的依賴,做到自主主動的學習。一是積極適應新的授課方式。初中往往集中講解重點,難點,要點,而且每課內容多,信息量大,所以要上課用心聽,用心記。積極適應新老師的授課方式,包括語音,板書,思路,要求等。同時還要勤學好問,主動接觸老師。二是制定科學的學習計劃,包括長期計劃(比如期中期末要達到什麼水平,各科的目標是什麼)和短期計劃,即周計劃、日計劃(比如,怎麼按排自己的一天活動)。此外可以找個競爭對手來激勵自己。三要摸索適合自己的學習方法。學習不能停留在被動聽課和機械地做作業上,要用心學,主動學,優選學,特別要講究方法,把握好預習,聽課、復習、做作業四個方面。4數學思想方法三對於剛上初一的孩子,改變習慣是最困難也是最有必要的一步。很多家長片面地讓孩子多關注知識點、請很多家教,可孩子的成績卻不見提高,這時就要思考一下,孩子的學習習慣是否成為了他成績提升的攔路虎。好的習慣,大的方面應該包括課堂注意聽講、認真記筆記、每天和每周固定時間復習和預習、為學習做好規劃等等,這些任務在老師和家長的督促下也能順利做好。
2. 初中數學思想方法有哪些
初中數學思想方法從接受的難易程度可分為三個層次:
一是基本具體的數學方法,如配方法、換元法、待定系數法、歸納法與演繹法等;
二是科學的邏輯方法,如觀察、歸納、類比、抽象概括等方法,以及分析法、綜合法與反證法等邏輯方法;
三是數學思想,如數形結合的思想、函數與方程的思想、分類討論的思想及化歸與轉化的思想。
例如:
1、數形結合思想。
數形結合思想就是根據數學題目所給的條件和結論之間的內在關系,即分析其代數的意義,又分析其幾何的意義,把題目所展示出的數量關系與圖形(畫圖)相結合起來,利用這樣的結合,找到解題的思路,使問題得到解決。
2、分類討論思想。
在數學中,有時候根據題目所給出的條件,可能存在各種不同的情況,這時候就需要通過分類討論,將所有可能出現的情況整合在一起,得出最後的結果,這種分類思考的方法,是一種重要的數學思想方法,也是一種重要的解題策略。
3、換元法。
在解決題目的過程過程中,將一個或者某個字母的式子看成一個整體,用一個新的字母來表示,達到簡化式子的目的。換元法可以把一個比較復雜的式子化簡,把問題歸結為比原來更基本的問題,達到化繁為簡、化難為易的效果。
4、配方法。
將一個式子設法構成平方式,然後再進行所需要的轉化。當在求二次函數最值問題、解決實際問題最省錢、盈利最大化等問題時,經常要用到此方法。
5、待定系數法法。
當我們所研究的數學式子具有某種特定形式時,要確定它,就需要求出式子中待定的字母的值;為此,需要把已知的條件代入到這個待定的式子中,往往會得到含待定字母的方程或者方程組,然後解這個方程或者方程組就可以使問題得到解決。
3. 如何培養初中學生的數學思想方法
現代教育觀點認為,數學教學是數學活動的教學,即思維活動的教學。如何在數學教學中培養學生的思維能力,養成良好思維品質是教學改革的一個重要課題。孔子說:「學而不思則罔,思而不學則殆」。在數學學習中要使學生思維活躍,就要教會學生分析問題的基本方法,這樣有利於培養學生的正確思維方式。要學生善於思維,必須重視基礎知識和基本技能的學習,沒有扎實的雙基,思維能力是得不到提高的。如何培養學生的數學思維能力,本文就是談談學生數學思維的培養的幾點嘗試。
1.找准數學思維能力培養的突破口。
心理學家認為,培養學生的數學思維品質是培養和發展數學能力的突破口。思維品質包括思維的深刻性、敏捷性、靈活性、批判性和創造性,它們反映了思維的不同方面的特徵,因此在教學過程中應該有不同的培養手段。
思維的深刻性既是數學的性質決定了數學教學既要以學生為基礎,又要培養學生的思維深刻性。數學思維的深刻性品質的差異集中體現了學生數學能力的差異,教學中培養學生數學思維的深刻性,實際上就是培養學生的數學能力。數學教學中應當教育學生學會透過現象看本質,學會全面地思考問題,養成追根究底的習慣。
數學思維的敏捷性主要反映了正確前提下的速度問題。因此,數學教學中,一方面可以考慮訓練學生的運算速度,另一方面要盡量使學生掌握數學概念、原理的本質,提高所掌握的數學知識的抽象程度。因為所掌握的知識越本質、抽象程度越高,其適應的范圍就越廣泛,檢索的速度也就越快。另外,運算速度不僅僅是對數學知識理解程度的差異,而且還有運算習慣以及思維概括能力的差異。因此,數學教學中,應當時刻向學生提出速度方面的要求,使學生掌握速算的要領。為了培養學生的思維靈活性,應當增強數學教學的變化性,為學生提供思維的廣泛聯想空間,使學生在面臨問題時能夠從多種角度進行考慮,並迅速地建立起自己的思路,真正做到「舉一反三」。教學實踐表明,變式教學對於培養學生思維的靈活性有很大作用。如在概念教學中,使學生用等值語言敘述概念;數學公式教學中,要求學生掌握公式的各種變形等,都有利於培養思維的靈活性。
創造性思維品質的培養,首先應當使學生融會貫通地學習知識,養成獨立思考的習慣。在獨立思考的基礎上,還要啟發學生積極思考,使學生多思善問。能夠提出高質量的問題是創新的開始。數學教學中應當鼓勵學生提出不同看法,並引導學生積極思考和自我鑒別。新的課程標准和教材為我們培養學生的創造性思維開辟了廣闊的空間。
批判性思維品質的培養,可以把重點放在引導學生檢查和調節自己的思維活動過程上。要引導學生剖析自己發現和解決問題的過程;學習中運用了哪些基本的思考方法、技能和技巧,它們的合理性如何,效果如何,有沒有更好的方法;學習中走過哪些彎路,犯過哪些錯誤,原因何在。
2.教會學生思維的方法
要學生善於思維,必須重視基礎知識和基本技能的學習,沒有扎實的雙基,思維能力是得不到提高的。數學概念、定理是推理論證和運算的基礎,准確地理解概念、定理是學好數學的前提。在教學過程中要提高學生觀察分析、由表及裡、由此及彼的認識能力。
數學概念、定理是推理論證和運算的基礎。在教學過程中要提高學生觀察分析、由表及裡、由此及彼的認識能力;在例題課中要把解(證)題思路的發現過程作為重要的教學環節,僅要學生知道該怎樣做,還要讓學生知道為什麼要這樣做,是什麼促使你這樣做,這樣想的;在數學練習中,要認真審題,細致觀察,對解題起關鍵作用的隱含條件要有挖掘的能力,會運用綜合法和分析法,並在解(證)題過程中盡量要學會用數學語言、數學符號進行表達。此外,還應加強分析、綜合、類比等方法的訓練,提高學生的邏輯思維能力;加強逆向應用公式和逆向思考的訓練,提高逆向思維能力;通過解題錯、漏的剖析,提高辨識思維能力;通過一題多解(證)的訓練,提高發散思維能力等。
3.善於調動學生內在的思維能力
一要培養興趣,讓學生迸發思維。教師要精心設計,使每節課形象、生動,並有意創造動人情境,設置誘人懸念,激發學生思維的火花和求知的慾望,還要經常指導學生運用已學的數學知識和方法解釋自己所熟悉的實際問題。
二要分散難點,讓學生樂於思維。對於較難的問題或教學內容,教師應根據學生的實際情況,適當分解,減緩坡度,分散難點,創造條件讓學生樂於思維。
三要鼓勵創新,讓學生獨立思維。鼓勵學生從不同的角度去觀察問題,分析問題,養成良好的思維習慣和品質;鼓勵學生敢於發表不同的見解,多贊揚、肯定,促進學生思維的廣闊性發展。
當然,良好的思維品質不是一朝一夕就能形成的,但只要根據學生實際情況,通過各種手段,堅持不懈,持之以恆,就必定會有所成效。
4. 初中數學學習有哪些思維方法可以推薦
初中數學教材中體現出的基本數學思想
數學思想方法是數學學科的精髓,是數學素養的重要內容之一,只有充分掌握領會,才能用效地應用知識,形成能力。那麼,什麼是數學思想呢?數學思想是指現實世界的空間形式和數量關系不反映到人的意識之中,經過思維活動而產生結果,是對數學事實與理論的本質認識。
初中數學整套教材涉及的數學思想三十多種,這里就幾種主要的數學思想作一總結。
一、用字母表示數的思想,這是基本的數學思想之一
在代數第一冊第一章「代數初步知識」中,主要體現了這種思想。例如:
設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的1/3與乙數的1/2差:1/3a-1/2b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。實中數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。6、「圓」這一章中,賀的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、「圓」這一章中,證明圓周角定理進所做的分析:證明弦切角定理的思路:求兩圓的切線長的問題。這些轉化都是通過輔助線來完成的。
4、把三角形或多邊形中的某種線段或面積問題化為相似比問題來解決。
四、分類思想
集合的分類,有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關生活經驗等都是通過分類討論的。
五、特殊與一般化思想
1.「圓」這一章中,證明圓周角定理和弦切角定理時用的是特殊到一般的方法,而相交弦定理及其推論則是一般到特殊的思想運用。
2.「整式乘除」這一章,首先人數和的運算特例中,抽象概括出冪的一般運算性質。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推導則是採用一般到特殊的推導過程。
六、類比思想
1. 不等式的性質,一元一次不等式的解法等內容時多採取與等式的性質,一無一次方和的解法等做類比。
2. 通過有理數的相反數、絕對值、運算律等得到實靈敏的相反數、絕對值、運算律等知識。
3.
在二次根式加減的運算中,指出「合並同類二次根式與合並同類項」類似。因此,二次根式的加減可以對比整式的加減進行。
4.
「角的度量、角的比較大小、角的和、差及平他線」,可與線段的相關知識進行類比;度、分、秒的運算可與時、分、秒的運算進行類比。
5. 相似多邊形的性質和相似三角形的性質類比。
七、數式通性
用數的運算所具有的性質,去控索式的同類運算是否也具有這樣的性質,如具有,叫數式通性,整式的乘除這一章中,是由數的性質推知式的性質的;由數的國減推知式的加減的。
八、同類合並思想
這一思想在「整式的加減」這一章中的具體體現是合並同類項。「根式」這一章中的合並同類根式。
九、無逼近思想
在無限不循環小數以及用有理數逼近表示無理數時,體現了無限逼近的思想。
十、對稱變換思想
在
根式乘法、根式除法、√a2 =a(a=0)等內容中,多次運用等價轉化、對稱變化,反用公式的
5. 初中數學學習思維方法都有哪些呢
一、掌握方法,培養能力。
學會學習,掌握學習規律和學習方法,以培養索取知識的能力,乃是當今青少年學習中十分重要的任務。只有憑借著良好的學習方法,才能達到「事半功倍」的學習效果。針對數學學習方法,需要注意「五要」、「五先」、「五會」:
五要:1、圍繞老師講述展開聯想;2、理清教材文字敘述思路;3、聽出教師講述的重點難點;4、跨越聽課的學習障礙,不受干擾;5、在理解基礎上扼要筆記。
五先:1、先預習後聽課;2、先嘗試回憶後看書;3、先看書後做作業;4、先理解後記憶;5、先知識整理後入眠。
五會:1、會制定學習計劃;2、會利用時間充分學習;3、會進行學習小結;4、會提出問題討論學習;5、會閱讀參考資料擴展學習。
二、學會思考,積極探究。
數學是思維的體操。學習離不開思維,數學更離不開思維活動。善思則學得活,效率高;不善思則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。因此,在教學過程中老師對學生要進行思維的訓練和指導,從而使學生學會思考探究。為此,教師應著力於做好以下工作:
1、從學生思維的「最近發展區」入手來開展啟發式教學,培養學生積極主動思考,使學生會思考。
2、從創設問題情境來開展探索式教學,培養學生追根究底的思考習慣,使學生學會深思。
3、從挖掘「問題鏈」來開展變式訓練,培養學生觀察、比較、分析、歸納、推理、概括的能力,使學生學會善思。
4、從回顧解題策略、方法的優劣來開展評價,培養學生去分析,使學生學會反思。
還有就是我們在教學過程中還應善於暴露思維過程,留下一定的思維時間與空間,使學生「思在知識的轉折點、思在問題的疑難處、思在矛盾的解決上、思在真理的探索中」,使學生達到融會貫通的境界。
三、多做習題,養成習慣。
要想學好數學,多做題目是難免的,以熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎。再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
四、有疑必問,提高效率。
有疑必問是提高學習效率的有效辦法。學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂、沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次,從而提高學習效率。發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。「閉門造車」只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到後面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣,最後無法趕上步伐。
五、調整心態,正確對待。
應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目。而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。要調整好自己的心態,使自己在任何時候都鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。