㈠ 煉鋼的化學方法
C + O2=點燃=CO2
CO2 + C=高溫=2CO
3CO+ Fe2O3=高溫=2Fe + 3CO2
生鐵燒紅後放在鐵粘上不停敲打的過程中生鐵中的碳與空氣中的氧氣反應生成二氧化碳,從而降低了碳的含量,變成含碳較低的鋼。
把煉鋼用生鐵放到煉鋼爐內按一定工藝熔煉,即得到鋼。鋼的產品有鋼錠、連鑄坯和直接鑄成各種鋼鑄件等。通常所講的鋼,一般是指軋製成各種鋼材的鋼。鋼屬於黑色金屬但鋼不完全等於黑色金屬。
煉鋼是指控制碳含量(一般小於2%),消除P、S、O、N等有害元素,保留或增加Si、Mn、Ni、Cr等有益元素並調整元素之間的比例,獲得最佳性能。
鋼,是對含碳量質量百分比介於0.02%至2.06%之間的鐵碳合金的統稱。鋼的化學成分可以有很大變化,只含碳元素的鋼稱為碳素鋼(碳鋼)或普通鋼;在實際生產中,鋼往往根據用途的不同含有不同的合金元素,比如:錳、鎳、釩等等。人類對鋼的應用和研究歷史相當悠久,但是直到19世紀貝氏煉鋼法發明之前,鋼的製取都是一項高成本低效率的工作。如今,鋼以其低廉的價格、可靠的性能成為世界上使用最多的材料之一,是建築業、製造業和人們日常生活中不可或缺的成分。可以說鋼是現代社會的物質基礎。
㈡ 常用的煉鋼方法有哪些請具體點,謝謝!
1 爐外精煉的產生
半世紀以來迅速發展的鋼鐵冶金重要技術; 半世紀以來迅速發展的鋼鐵冶金重要技術; 提高生產率、降低生產成本; 提高生產率、降低生產成本;
代替電爐還原期、緩沖、 代替電爐還原期、緩沖、溫度調整
提高鋼質量; 提高鋼質量;
去除鋼種的有害元素及氣體, 、 、 、 、 成分調整;去除鋼種的有害元素及氣體,S、O、N、H、C 等;成分調整;夾雜物去除 及控制
滿足不同鋼種的特殊要求,擴大品種(轉爐)。 滿足不同鋼種的特殊要求,擴大品種(轉爐)。
爐外精煉發展歷程
20世紀30-40年代,合成渣洗、 20世紀30-40年代,合成渣洗、真空模鑄 世紀30年代
1933年 法國佩蘭(R.Perrin)應用高鹼度合成渣, 1933年,法國佩蘭(R.Perrin)應用高鹼度合成渣,對鋼液 應用高鹼度合成渣 進行「渣洗脫硫」 現代爐外精練技術的萌芽 現代爐外精練技術的萌芽; 進行「渣洗脫硫」—現代爐外精練技術的萌芽;
50年代,大功率蒸汽噴射泵技術的突破, 50年代,大功率蒸汽噴射泵技術的突破,發明 年代 了鋼包提升脫氣法(DH)及循環脫氣法(RH) (DH)及循環脫氣法 了鋼包提升脫氣法(DH)及循環脫氣法(RH)
1935年 確定大型鋼鍛件中的白點缺陷是由氫引起的-氫脆。 1935年H.Schenck 確定大型鋼鍛件中的白點缺陷是由氫引起的-氫脆。 1950年 德國Bochumer (伯施莫爾 威林)真空鑄錠。 伯施莫爾1950年,德國Bochumer Verein (伯施莫爾-威林)真空鑄錠。 1953年以來,美國的10萬千瓦以上的發電廠中, 1953年以來,美國的10萬千瓦以上的發電廠中,都發現了電機軸或葉 年以來10萬千瓦以上的發電廠中 片折損的事故。 片折損的事故。 1954年 鋼包真空脫氣。 1954年,鋼包真空脫氣。 1956年 真空循環脫氣(DH、RH)。 1956年,真空循環脫氣(DH、RH)。
爐外精煉發展歷程
60-70年代,高質量鋼種的要求, 60-70年代,高質量鋼種的要求,產生了各種 年代 精煉方法
60、70年代是爐外精煉多種方法分明的繁榮時期 60、70年代是爐外精煉多種方法分明的繁榮時期 60年代起純凈鋼生產概念的提出 年代起純凈鋼生產概念的提出、 與60年代起純凈鋼生產概念的提出、連鑄生產工藝 穩定和連鑄品種擴大的強烈要求密切相關 此時, 此時,爐外精煉正式形成了真空和非真空兩大系列 不同功能的系統技術, 不同功能的系統技術,同時鐵水預處理技術也得到迅 速發展,它和鋼水精煉技術前後呼應,經濟分工, 速發展,它和鋼水精煉技術前後呼應,經濟分工,形 成系統的爐外處理技術體系, 成系統的爐外處理技術體系,使鋼鐵生產流程的優化 重組基本完成
爐外精煉發展歷程
這個時期, 這個時期,還基本奠定了吹氬技術作為各種爐外精 煉技術基礎的地位和作用 這一時期發展的技術:VOD-VAD、ASEA-SKF、 這一時期發展的技術:VOD-VAD、ASEA-SKF、RH OB、LF、噴射冶金技術(SL、TN、KTS、KIP)、 )、合金 -OB、LF、噴射冶金技術(SL、TN、KTS、KIP)、合金 包芯線技術、加蓋和加浸漬罩的吹氬技術(SAB、CAB、 包芯線技術、加蓋和加浸漬罩的吹氬技術(SAB、CAB、 CAS) CAS)
80-90年代,連鑄的發展,80-90年代,連鑄的發展,連鑄坯對質量的要 年代 求及煉鋼爐與連鑄的銜接
RH-KTB、RH-MFP、RH-OB;RH-IJ( RH-KTB、RH-MFP、RH-OB;RH-IJ(真空深脫),RH PB、WPB(真空深脫硫)、 RH- )、V KIP、SRP脫磷 磷),RH-PB、WPB(真空深脫硫)、V-KIP、SRP脫磷
21世紀,更高節奏及超級鋼的生產。 21世紀,更高節奏及超級鋼的生產。 世紀
我國90年代爐外處理技術成果 我國 年代爐外處理技術成果
我國90年代四項突出爐外處理技術成果 我國90年代四項突出爐外處理技術成果 90 (1)鋼水真空處理綜合精煉技術開發與應用 鎂質鐵水脫硫技術和轉爐鐵水預處理技術 (2)鎂質鐵水脫硫技術和轉爐鐵水預處理技術 開發與應用 適於中小鋼包 中小鋼包鋼水精煉技術的開發與生產 (3)適於中小鋼包鋼水精煉技術的開發與生產 應用的發展 中間包以鎂 鋯系材料及流場優化為 (4)中間包以鎂-鈣-鋯系材料及流場優化為 中心的中間包冶金技術的開發應用 再與鋼包精煉爐吹氬、 再與鋼包精煉爐吹氬、喂絲等基本技術相結合
近幾年內爐外處理技術的重 點發展方向
(1)以轉爐作為主要手段的全量鐵水預處理 不僅會大大提高鐵水預處理的生產效率, 不僅會大大提高鐵水預處理的生產效率, 還將為現有冶金設備的功能優化重組開辟新的 方向 (2)中間包冶金及鋼水凝固過程的精煉技術將 逐漸顯示其對最終鋼鐵產品質量優化的重要意 義(3)電磁冶金技術對爐外處理技術的發展將起 到積極推動作用 (4)鋼鐵生產固體原料預處理技術研究
近幾年內爐外處理技術的重 點發展方向
(5)我國中小型鋼廠爐外處理技術將會有重大 突破性進展 (6)配套同步發展輔助技術,包括冶煉爐、精 配套同步發展輔助技術,包括冶煉爐、 煉爐准確的終點控制技術和工序銜接技術智能 化
爐外精煉的內容
脫氧、脫硫、 脫氧、脫硫、脫H、脫N 、 去氣、去除夾雜、 去氣、去除夾雜、夾雜物改性 調整鋼液成分及溫度
爐外精煉作用和地位
提高冶金產品質量, 提高冶金產品質量,擴大鋼鐵生產品種不可缺 少的手段; 少的手段; 是優化冶金生產工藝流程,進一步提高生產效 是優化冶金生產工藝流程, 節能強耗、 率、節能強耗、降低生產成本的有力手段 保證煉鋼-連鑄- 保證煉鋼-連鑄-連鑄坯熱送熱裝和直接軋制 高溫連接優化的必要工藝手段 優化重組的鋼鐵生產工藝流程中獨立的, 優化重組的鋼鐵生產工藝流程中獨立的,不可 替代的生產工序
2 爐外精煉的手段
渣洗 真空 攪拌 噴吹 調溫 最簡單的精煉手段; 最簡單的精煉手段; 目前應用的高質量鋼的精煉手段; 目前應用的高質量鋼的精煉手段; 最基本的精煉手段; 最基本的精煉手段; 將反應劑直接加入熔體的手段; 將反應劑直接加入熔體的手段; 加熱是調節溫度的一項常用手段。 加熱是調節溫度的一項常用手段。
合成渣洗
根據要求將各種渣料配置成滿足某種冶金功能的合成爐 渣; 通過在專門的煉渣爐中熔煉,出鋼時鋼液與爐渣混合, 通過在專門的煉渣爐中熔煉,出鋼時鋼液與爐渣混合, 實現脫硫及脫氧去夾雜功能; 實現脫硫及脫氧去夾雜功能; 使渣和鋼充分接觸,通過渣-鋼之間的反應,使渣和鋼充分接觸,通過渣-鋼之間的反應,有效去除 鋼中的硫和氧(夾雜物); 鋼中的硫和氧(夾雜物); 不能去除鋼中氣體; 不能去除鋼中氣體; 必須將原爐渣去除; 必須將原爐渣去除; 同爐渣洗、異爐渣洗。 同爐渣洗、異爐渣洗。
真空處理
脫氣的主要方法 提高真空度可將鋼中C 降低; 提高真空度可將鋼中C、H、O降低;
真空處理
日本真空技術,真空度到1 torr; 日本真空技術,真空度到1 torr; C<10ppm,H<1ppm,O<5ppm 中國真空技術,真空度到3 torr; 中國真空技術,真空度到3 torr; C<20ppm,H<2ppm,O<15ppm。 C<20ppm,H<2ppm,O<15ppm。 新開發了脫硫功能:KTB 新開發了脫硫功能: 代表性裝置:RH、VD、VOD。 代表性裝置:RH、VD、VOD。
攪拌
目的: 目的:
加速反應的進行 均勻成分、均勻成分、溫度
手段: 手段:
電磁攪拌 吹氣攪拌
噴吹技術
噴吹實現脫碳、脫硫、脫氧、合金化、控制夾 噴吹實現脫碳、脫硫、脫氧、合金化、 雜物形態; 雜物形態; VOD; 單一氣體噴吹 VOD; AOD; 混合氣體噴吹 AOD; TN; 粉氣流的噴吹 TN; 喂線。 固體物加入 喂線。
升溫工藝
提高生產率的需要; 提高生產率的需要; 保證連鑄的順利進行; 保證連鑄的順利進行; 加熱方法: 加熱方法:
電加熱:電弧加熱、 電加熱:電弧加熱、感應 加熱、加熱、等離子加熱等 化學熱升溫裝置:
LF加熱 LF加熱 CAS化學加熱 CAS化學加熱 OB
3 主要的精煉工藝
LF(Ladle Furnace process);; AOD(Argon-oxygen decaburizition process ); VOD (Vacuum oxygen decrease process) ; RH (Ruhrstahl Heraeus process); CAS-OB( Composition adjustments by sealed argon -oxygen blowing process) ; 喂線 (Insert thread) ; 鋼包吹氬攪拌(Ladle argon stirring);鋼包吹氬攪拌 ; 噴粉( 噴粉 powder injection )。 。
LF爐 3.1 LF爐
最常用的精煉方法 取代電爐還原期 解決了轉爐冶煉優鋼問題 具有加熱及攪拌功能 脫氧、脫硫、 脫氧、脫硫、合金化
工藝優點
精煉功能強, 精煉功能強,適宜生產超 低硫、超低氧鋼; 低硫、超低氧鋼; 具備電弧加熱功能, 具備電弧加熱功能,熱效 率高, 升溫幅度大, 率高 , 升溫幅度大 , 溫度 控制精度高; 控制精度高; 具備攪拌和合金化功能, 具備攪拌和合金化功能 , 易於實現窄成分控制, 易於實現窄成分控制, 提 高產品的穩定性; 高產品的穩定性; 採用渣鋼精煉工藝, 採用渣鋼精煉工藝, 精 煉成本較低; 煉成本較低; 設備簡單,投資較少。 設備簡單,投資較少。
1-電極;2-合金料斗;3-透氣磚;4LF爐精煉原理 滑動水口 1-電極;2-合金料斗;3-透氣磚;4滑動水口
LF爐生產流程 LF爐生產流程
LF爐工藝操作 常規 LF爐工藝操作
電爐EBT出鋼,出鋼過程加合金、加渣料(石灰、 電爐EBT出鋼,出鋼過程加合金、加渣料(石灰、 EBT出鋼 螢石等2%) 底吹氬、通電升溫、化渣,10分鍾 2%), 螢石等2%),底吹氬、通電升溫、化渣,10分鍾 取樣分析,加渣料(1 (1% 測溫取樣, 取樣分析,加渣料(1%),測溫取樣,加合金看脫氧,准備出鋼。 脫氧,准備出鋼。 一般30-50分鍾 電耗50 80kwh/t; 分鍾, 50- 一般30-50分鍾,電耗50-80kwh/t; 30 現代轉爐、電爐與連鑄聯系的紐帶。 現代轉爐、電爐與連鑄聯系的紐帶。
LF爐精煉的主要工藝內容 LF爐精煉的主要工藝內容
(1)加熱與溫度控制
LF爐採用電弧加熱,加熱效率一般≥60%,高於電爐升溫熱 LF爐採用電弧加熱,加熱效率一般≥60%,高於電爐升溫熱 爐採用電弧加熱%, 效率。噸鋼水平均升溫1℃耗電0.5 0.8kWh。 1℃耗電0.5~ 效率。噸鋼水平均升溫1℃耗電0.5~0.8kWh。升溫速度決定於供電比功率(kVA/t),供電比功率的大小又 升溫速度決定於供電比功率(kVA/t),供電比功率的大小又 ), 決定於鋼包耐材的熔損指數。通常LF爐的供電比功率為150~ 決定於鋼包耐材的熔損指數。通常LF爐的供電比功率為150~ LF爐的供電比功率為150 200kVA/t,升溫速度可達3 5℃/min, 200kVA/t,升溫速度可達3~5℃/min,採用埋弧泡沫技術可提高 加熱效率10%~15 10%~15%。 加熱效率10%~15%。 採用計算機動態控制終點溫度可保證控制精度≤±5℃。 採用計算機動態控制終點溫度可保證控制精度≤±5℃。 ≤±5℃
LF爐精煉的主要工藝內容 LF爐精煉的主要工藝內容
(2)白渣精煉工藝
利用白渣進行精煉,實現脫硫、脫氧、生產超低硫和低氧鋼。 利用白渣進行精煉,實現脫硫、脫氧、生產超低硫和低氧鋼。 白渣精煉是LF
㈢ 古代的煉鋼方法主要有哪兩種
古代的煉鋼方法主要有兩種:如果用塊煉鐵做原料,就必須用滲碳技術以增加碳分;如果用生鐵做原料,就必須用脫碳技術以減少碳分。