1. 小數乘法簡便運算
小數乘法計算方法:先把因數的小數點向右移動使小數擴大成整數(或者不看小數的小數點,直接把小數當成整數計算);然後按整數乘法的計演算法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位、點上小數點。
四捨五入法:精確到哪一位,就看這一位的後面一位,如果後一位數字大於或等於5(即5、6、7、8、9),則向前一位進1,再將這一位以及後面的小數全部捨去;如果後一位數字小於或等於4(即0、1、2、3、4),可以直接將後面的小數全部捨去。
相關信息:
加法交換律:a+b=b+a。
加法結合律:a+b+c=a+(b+c)。
乘法交換律:a*b=b*a。
乘法結合律:a*b*c=a*(b*c)。
乘法分配律:ab+ac=a(b+c)。
一個數連續減兩個數,可以減這兩個數的和:a-b-c=a-(b+c)。
2. 乘法計算如何簡便,列表
方法1:3.4*7*1.5=(3+0.4)*1.5*7=(3*1.5+0.4*1.5)*7=(4.5+0.6)*7=5.1*7=35.7。
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
乘法分配律,簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律用於調換各個數的位置:a×b=b×a
3. 乘法簡便計算的方法規律
乘法(multiplication),是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
乘法是四則運算之一
例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
使用鉛筆和紙張乘數的常用方法需要一個小數字(通常為0到9的任意兩個數字)的存儲或查詢產品的乘法表,但是一種農民乘法演算法的方法不是。
將數字乘以多於幾位小數位是繁瑣而且容易出錯的。發明了通用對數以簡化這種計算。幻燈片規則允許數字快速乘以大約三個准確度的地方。從二十世紀初開始,機械計算器,如Marchant,自動倍增多達10位數。現代電子計算機和計算器大大減少了用手倍增的需要。
3×5表示5個3相加
5x3表示3個5相加。
注意:1.在如上乘法表示什麼中,常把乘號後面的因數做為乘號前因數的倍數。
2.參見wiki中對乘數和被乘數的定義
另:乘法的新意義:乘法不是加法的簡單記法
Ⅰ 乘法原理:如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
Ⅱ 加法原理:如果因變數f與自變數(z1,z2,z3…, zn)之間存在直接正比關系並且每個自變數存在相同的質,缺少任何一個自變數因變數f仍然有其意義,則為加法。
在概率論中,一個事件,出現的結果包括n類結果,第1類結果包括M1個不同的結果,第2類結果包括M2個不同的結果,……,第n類結果包括Mn個不同的結果,那麼這個事件可能出現N=M1+M2+M3+……+Mn個不同的結果。
以上所說的質是按照自變數的作用來劃分的。
此原理是邏輯乘法和邏輯加法的定量表述。
法則
兩數相乘,同號得正,異號得負,並把絕對值相乘。
運算定律
整數的乘法運算滿足:交換律,結合律, 分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1.乘法交換律: ,註:字母與字母相乘,乘號不用寫,或者可以寫成·。
2.乘法結合律: ,
3.乘法分配律: 。
4. 乘法速算簡便方法 簡單實用的幾種速算方法
1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=解: 1×1=1 2+4=6 2×4=8 12×14=168註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補,尾相加等於10:口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=解:2+1=32×3=63×7=21 23×27=621註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=解:3+1=4 4×4=16 7×4=28 37×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=解:2×4=8 2+4=6 1×1=1 21×41=861
5、11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分別在首尾 11×23125=254375 註:和滿十要進一。
6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。例:13×326=解:13個位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 註:和滿十要進一。
5. 乘法簡便方法
乘法簡便方法例子演示78×98
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
78×98
=78×100-78×2
=7800-156
=7644
(5)簡便的乘法計算方法擴展閱讀-豎式計算:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:8×78=624
步驟二:9×78=7020
根據以上計算結果相加為7644
存疑請追問,滿意請採納
6. 乘法的簡便方法
乘法的簡便方法有:結合法,折數法,分解法,改數法。如計算下列算式:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為(4×25)x(4×25)。
16×25×25=(4×25)x(4×25)
=100×100
=10000
7. 如何用乘法簡便運算
4.8乘以0.25可以用兩種方法進行簡便計算:
1、解析:把4.8拆成4×1.2,然後用乘法結合律進行計算即可。
4.8×0.25
=1.2×(4×0.25)
=1.2×1
=1.2
2、解析:把4.8拆成4+0.8,然後用乘法分配率就行計算即可。
4.8×0.25
=(4+0.8)×0.25
=4×0.25+0.8×0.25
=1+0.2
=1.2
1、乘法結合律
三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。
字母表示:a×(b×c)=(a×b)×c
2、乘法分配律
兩個數的和與一個數相乘,等於把這兩個加數分別同這個數相乘,再把兩個積加起來,使計算更加簡便,且結果不變。
字母表示:(a+b)c=ac+bc (更常見)
還有另一種表示法:a(b+c)=ab+ac
8. 乘法的簡便方法是什麼
一、30以內的兩個兩位數乘積的心算速算
1、兩個因數都在20以內,任意兩個20以內的兩個兩位數的積,都可以將其中一個因數的」尾數」移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如:
11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288
2、兩個因數分別在10至20和20至30之間對於任意這樣兩個因數的積,都可以將較小的一個因數的「尾數」的2倍移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377
9. 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(9)簡便的乘法計算方法擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。