㈠ 五年級簡便運算的方法
簡便運算一般有5種方法:
1. 湊整法:通過加、減一個數將其湊成整十、整百、整千的數。
2. 交置法:也就是通常所說的結合律,幾個數相加、相減,將其位置交換一下,湊成整十、整百、整千的數。
3. 去括弧法:有時在計算含有括弧的算式時,通過去除括弧,可使運算簡便,但要注意的是去括弧後的符號變化。
4、運用運算定律
加法交換律:a+b=b+a
加法結合律: a+b+c=a+(b+c)
乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
5、減法性質: a-b-c=a-c-b=a-(b+c)
除法性質:a÷b÷c=a÷c÷b=a÷(b×c)
A、當一個計算題只有同一級運算(只有乘除或只有加減)又沒有括弧時,我們可以隨意「帶符號搬家」
12.06+5.07+2.94 30.34+9.76-10.34
25×7×4 34÷4÷1.7
102×7.3÷5.1 41.06-19.72-20.28
7.2+2.2×1.2 2.6÷1.3+8.7
B、當同級運算需加括弧或去括弧時,即加或去括弧時,括弧前是加或乘號,可以直接加或去括弧,而括弧前是減或除號,括弧里要變號。
700÷14÷5 18.6÷2.5÷0.4
1.06×2.5×4 5.68+(5.39+4.32)
19.68-(2.97+9.68) 1.25×(8÷0.5)
0.25×(4×1.2) 1.25×(213×0.8)
乘法分配律的兩種典型類型
A、括弧里是加或減運算,與另一個數相乘,注意分配。
0.4×(0.25+2.5) (12+1.2) ×0.2 (40-1.25)×0.8
B、注意相同因數的提取。
0.92×1.41+0.92×8.59 7.8×9.9+9.9×2.2
1.3×11.6-1.6×1.3 11.9×9.9+1.19×1
㈡ 五年級簡便計算有哪些
五年級的簡便計算有:湊整法、交置法、去括弧法、運用運算定律、減法性質。注意,對於同一個計算題,用簡便方法計算,與不用簡便方法計算得到的結果相同。我們可以用兩種計算方法得到的結果對比,檢驗我們的計算是否正確。
小學數學簡便運算歸類練習
一般情況下,四則運算的計算順序是:有括弧時,先算括弧裡面的;沒有括弧時,先算二級運算,再算- -級運算,只有同一級運算時,從左往右依次計算。
一、簡便運算一般有5種方法:
1.湊整法:通過加、減一個數將其湊成整十、整百、整千的數。
2.交置法:也就是通常所說的結合律,幾個數相加、相減,將其位置交換一下,湊成整十、整百、整千的數。
3.去括弧法:有時在計算含有括弧的算式時,通過去除括弧,可使運算簡便,但要注意的是去括弧後的符號變化。
4、運用運算定律。
加法交換律: a+b=b+a;
加法結合律::a+b+c=a+ (b+c);
乘法交換律:aXb=bXa;
乘法結合律:aXbXc=aX (bXc);
乘法分配律:(a+b) Xc=aXc+bXc。
5、 減法性質:a-b-c=a-c-b=a- (b+c);
除法性質:a+b十c=a+c十b=a+ (bXc)。
運算簡便,但要注意的是去括弧後的符號變化。
㈢ 六年級上冊數學簡便運算有哪些
六年級上冊數學數學簡便主要有六大方法:
1.「湊整巧算」——運用加法的交換律、結合律進行計算。
2.運用乘法的交換律、結合律進行簡算。
3.運用減法的性質進行簡算,同時注意逆進行。
4.運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。
5.運用乘法分配律進行簡算。
6.混合運算(根據混合運算的法則)。
簡便計算中最常用的方法是乘法分配律。
乘法分配律:ax(b+c)=axb+axc,其中a,b,c是任意實數。
相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用,也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘,如將上式中的+變為x,運用乘法結合律也可簡便計算。
㈣ 數學簡便計算怎麼做
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數【例2】。
㈤ 簡便運算的技巧和方法有哪些
數學簡便計算方法:
一、裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。
(3)分母上幾個因數間的差是一個定值。
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。
例題
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
㈥ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
㈦ 簡便計算有哪幾種
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a。
4、加法交換律
加法交換律用於調換各個數的位置:a+b=b+a。
5、加法結合律
(a+b)+c=a+(b+c)。
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
(7)數學計算簡便方法有哪幾種擴展閱讀:
性質
減法1
a-b-c=a-(b+c)
減法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
注意事項:
在進行簡便運算(四則運算)時,應注意運算符號(乘除和加減)和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。
㈧ 簡便運算的方法有哪些
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
㈨ 簡便計算方法有哪些
加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
乘法交換律:a*b=b*a
乘法結合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
綜合算式(四則運算)應當注意的地方:
1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
(9)數學計算簡便方法有哪幾種擴展閱讀:
從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。
幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。
㈩ 數學簡便計算,有哪幾種方法
一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55
第二次
=1×55
=55
一簡算的根據
a、乘法運算定律
b、加法運算定律
c、減法、除法的運算性質
二簡算的類型
a、直接簡算
b、部分簡算
c、轉化簡算
d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律)
a×b×c=a×(b×c)(乘法結合律)
(a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律)
a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律)
a÷b÷c=a÷(b×c)(除法結合律)
(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
希望幫到你
望採納
謝謝
加油