1、描述統計。描述性統計是指運用製表和分類,圖形以及計筠概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。
(1)缺失值填充:常用方法:剔除法、均值法、最小鄰居法、比率回歸法、決策樹法。
(2)正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
2、假設檢驗
(1)參數檢驗。參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。U驗 使用條件:當樣本含量n較大時,樣本值符合正態分布。T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布。單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。
(2)非參數檢驗。非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。雖然是連續數據,但總體分布形態未知或者非正態;體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
3、信度分析
檢査測量的可信度,例如調查問卷的真實性。分類:
(1)外在信度:不同時間測量時量表的一致性程度,常用方法重測信度
(2)內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。
4、列聯表分析。用於分析離散變數或定型變數之間是否存在相關。
對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。
5、相關分析
研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
(1)單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;
(2)復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;
(3)偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。
6、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
(1)單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系
(2)多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
(3)多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
(4)協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,
『貳』 統計方法分類
1、計量資料的統計方法。
分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。
參數檢驗法主要為t檢驗和方差分析(ANOVA,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小樣本比較時要求兩總體分布為正態分布且方差齊性,若不能滿足以上要求,宜用非參數方法(秩和檢驗)。方差分析可用於兩個以上樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和單因素方差分析。
2、計數資料的統計方法。
計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。四格表資料:組間比較用檢驗或u檢驗,若不能滿足檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。
3、等級資料的統計方法。
等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。
『叄』 統計分析方法有哪幾種 常用的統計方法有哪些
1、系統聚類分析:是一門多元統計分類法,根據多種地學要素對地理實體進行劃分類別的方法。對不同的要素劃分類別往往反映不同目標的等級序列,如土地分等定級、水土流失強度分級等。
2、回歸分析:在統計學中,回歸分析(regression analysis)指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
3、主成分分析:主成分分析(Principal Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。
『肆』 統計學中的分類方法
介紹
理解不同的數據類型,是探索性數據分析(Exploratory Data Analysis,EDA)所需的關鍵預備知識,同時也有助於你選擇正確的可視化方法。你可以將數據類型看成歸類不同類型變數的方式。我們將討論主要的變數類型,以及相應的示例。有時我們會稱其為測量尺度(measurement scale)。
類別數據
類別數據(categrorical data)表示特性,例如一個人的性別,所說的語言,等等。類別數據同樣可以使用數值(例如:1表示雌性,0表示雄性)。
名目數據
名目值(nominal value)指用於標記變數的定性離散單元。你可以直接把它們想像成「標簽」。注意名目數據是無序的。因此,如果你改變名目值的順序,其語義並不會改變。下面是一些名目特徵的例子:
性別:雌性、雄性。
語言:英語、法語、德語、西班牙語。
上面的性別特徵也被稱為「二分(dichotomous)」值,因為它只包含兩個類別。
次序數據
次序值(ordinal value)指離散、有序的定性單元。除了有序之外,它幾乎和名目數據一樣。例如,教育背景可以用次序值來表示:
初中
高中
大學
研究生
注意,其實初中、高中之間的差別,和高中、大學之間的差別,是不一樣的。這是次序數據的主要限制,次序值之間的差別是未知的。因此,次序值通常用於衡量非數值特徵,例如愉悅程度、客戶滿意度。
數值數據
離散數據
離散數據(discrete data)的值是不同而分散的,換句話說,只能接受一些特定值。這類數據無法測量但可以計數。它基本上用來表示可以分類的信息。例如,拋100次硬幣正面向上的次數。
你可以通過以下兩個問題檢查你處理的是否是離散數據:你可以對其計數嗎?它可以被切分成越來越小的部分嗎?
相反,如果數據可以測量但無法計數,那就是連續數據。
連續數據
連續數據(continuous data)表示測量。例如身高。
連續數據可以分為等距數據(interval data)和等比數據(ratio data)。
等距值指間隔相等的有序單元,也就是說,等距變數包含有序數值,並且我們知道這些數值之間的間隔。例如,用等距數據表示溫度:
-10
-5
0
+5
+10
+15
等距值的問題在於,它們沒有「真正的零」。拿上面的例子來說,0度不是絕對零度。另外,我們可以加減等距值,而不能乘除等距值或計算比率。由於沒有「真正的零」,無法應用許多描述統計學或推論統計學的方法。
等比值具有等距值的所有特性,同時也有絕對的零。因此,不僅可以加減,還可以乘除。高度、重量、長度、絕對溫度等都屬於等比值。
數據類型為什麼重要?
數據類型是一個非常重要的概念,因為統計學方法只能應用於特定的數據類型。你需要使用不同的方式分析連續數據和類別數據。因此,理解你處理的數據的類型,讓你能夠選擇正確的分析方法。
下面我們將重新查看上面提到的每種數據類型,了解它們可以應用什麼樣的統計學方法。為了理解我們將討論的一些性質,你需要對描述性統計學有所了解。如果你對此不熟悉,可以先看下我寫的描述性統計學介紹。
統計學方法
名目數據
處理名目數據時,你通過下述方式收集信息:
頻數 在一段時間內或整個數據集中出現的次數。
比例 頻數除以所有事件的頻數之和,即可得到比例。
百分比 我想這無需解釋了吧。
眾數 出現次數最多,也就是頻數最高的數據。
可視化方法 你可以使用餅圖或直方圖可視化名目數據。
統計學常用數據類型
左:餅圖;右:直方圖
次序數據
當你處理次序數據時,你可以使用以上用於名目數據的方法,不過,除此之外,你還可以使用一些額外的工具。也就是說,你可以使用頻數、比例、百分比、眾數概括次序數據,也可以使用餅圖、直方圖可視化次序數據。除此之外,你還可以使用:
百分位數 計算由小到大排列的次序數據的累計百分位,某一百分位對應的數據值就稱為這一百分位的百分位數。百分位數可以用來描述數據的離散趨勢。
中位數 即第50百分位數,它將數據分為相等的上下兩部分。中位數可以用來描述數據的中間趨勢。例如,如果我們用次序數據表示星巴克咖啡的容量:中杯、大杯、特大杯。那麼,其中位數為大杯(也就是說,真正的中杯是大杯)。
四分位距 第75百分位數與第25百分位數之差即為四分位距。四分位距可以簡要概述數據的離散趨勢。
連續數據
大多數統計學方法都可以用於連續數據。你可以使用百分位數、中位數、四分位距、均值、眾數、標准差、區間。
你可以使用矩形圖或箱形圖可視化連續數據。從矩形圖上可以看到分布的中間趨勢、離散程度、形態和峰態。注意,矩形圖不體現離散值,因此我們有時使用箱形圖。
『伍』 統計學可以分為哪幾種方式
統計學的分類與種類
統計學的種類很多,按不同的標准可以有以下幾種不同的分類。
(1)按統計研究的性質不同進行分類。按此類方法可以把統計學分為理論統計學和應用統計學。
1)理論統計學是以統計學的基本原理(一般理論和方法)為主要研究內容的統計學,如統計學原理、數理統計學等。
2)應用統計學是以統計方法在各專業領域中的應用研究所呈現的特有的統計方法為主要內容的統計學科,如經濟統計學、人口統計學等。
(2)按統計方法的特點不同進行分類。按此類方法可以把統計學分為描述統計學和推斷統計學。
1)描述統計學是以統計資料的收集、整理、綜合計算及分析等方法和形式,對社會經濟現象的總體進行數量方面反映的統計方法論。
2)推斷統計學是以部分統計資料的個性特徵,對全部或大部分同類現象的共性特性進行科學估計、檢驗及分析研究的統計方法論。
『陸』 常用統計分析方法有哪些
1、對比分析法
對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。
2、分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。
根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
3、預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。
最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
5、AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。
例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。
『柒』 常用統計分析方法
數據分析師針對不同業務問題可以製作各種具體的數據模型去分析問題,運用各種分析方法去探索數據,這里介紹最常用的三種分析方法,希望可以對您的工作有一定的的幫助
文中可視化圖表均使用DataFocus數據分析工具製作。
1.相關分析
相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。
2.回歸分析
回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。
另請注意,散點圖上的異常值非常重要。例如,外圍數據點可能代表公司最關鍵供應商或暢銷產品的輸入。但是,回歸線的性質通常會讓您忽略這些異常值。
3.假設檢驗
假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。
在掌握了數據分析的基本圖形和分析方法之後,數據分析師認為有一點需要注意:「在沒有確認如何表達你想要解決的問題之前,不要開始進行數據分析。」簡而言之,如果您無法解釋您試圖用數據分析解決的業務問題,那麼沒有數據分析可以解決問題。
『捌』 常見的數據統計方法有什麼
常見的數據統計方法有:表格、折線統計圖、條形統計圖、扇形統計圖。舉一個例子來具體分說明一下,比如說:我在淘寶開了個童裝店,為了方便統計每半個月的銷售額,現在用以上這四種統計方法來演示一下。
1.表格就是通過畫格子的方式來統計數據,在這里可以畫三行橫線,得到兩條細長的格子,再把這兩行均勻的分為15個上下格子。橫一為日期,橫二為銷售額,半個月下來都填進去就一目瞭然。
2.折線是通過畫點,把15天的銷售額都連成一條折線,通過上下起伏來看波動的數據。先畫一「L」形,橫線作日期,豎線作銷售額,銷售額可以自己寫一個數,一直往上數與數之間相差一樣。均勻的把橫豎線分為15份,每個日期對應多少銷售額,就在「L」的半框里,以對應的日期和銷售畫橫線和豎線,交叉的位置取一點。然後每天如此,再用直線連接這15個點,就能清楚的看到這半個月哪一天銷售最好,哪一天銷售墊底。
3.條形統計圖作出的是條狀的數據統計圖,和折線統計圖一樣,畫「L」,橫為日期豎為銷售額。只不過這里不畫點點,畫倒立的長方形,然後通過高高低低的條形圖來分析半個月的銷售額。
4.扇形統計圖就是把一個圓形,平均分為15份,一個月下來把所有的日銷售額加起來,用當天的數據除以總數,乘以百分數。每一分里寫上日期和當天銷售額占總數的百分比,用這個百分數來統計半個月的數據。每個圖的做法都不一樣,但表達的意思都是同樣的,這就是日常生活中最常見的幾種數據統計。
『玖』 5種常用的統計學方法是什麼
1、大量觀察法
(9)可用的分類統計方法有哪些擴展閱讀:
(一)大量觀察法
這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異。
但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。
(二)、統計分組法
由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);
在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。
(三)、綜合指標法
統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。
綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。
『拾』 統計分析方法有哪些