導航:首頁 > 知識科普 > 簡便方法周補數167怎麼算

簡便方法周補數167怎麼算

發布時間:2022-11-21 03:07:13

⑴ 簡便運算的16種運算方法是什麼

一、運用乘法分配律簡便計算

乘法分配律指的是:

例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

(1)簡便方法周補數167怎麼算擴展閱讀:

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。

乘法結合律

乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。

⑵ 用簡便方法計算 簡便方法計算是什麼

1、簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。

2、簡便方法是一種特殊的計算,運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。

3、在數學當中運用簡便計算方法可以很大程度節省做題的時間。

4、簡便計算使得學生在短暫的時間內快速准確地算出正確答案。

5、簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。

⑶ 六年級上冊 簡便計算方法有哪些

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很雜的式子變得很易計算出得數。

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變,如:(2+4)×5=2×5+4×56。

除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

簡便計算中最常用的方法是乘法分配律。

乘法分配律:ax(b+c)=axb+axc,其中a,b,c是任意實數。

相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用,也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘,如將上式中的+變為x,運用乘法結合律也可簡便計算。

⑷ 267+161-167+39的簡便計算怎麼算

267+161-167+39
=(267-167)+(161+39)
=100+200
=300
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律用於調換各個數的位置:a×b=b×a

加法交換律用於調換各個數的位置:a+b=b+a

加法結合律
(a+b)+c=a+(b+c)

⑸ 67✘63用簡便方法記算

67✘63

=67x(60+3)

=67x60+67x3

=4020+201

=4221

乘法的計演算法則:

數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊。

凡是被乘數的各位數字遇到4、5、6時,期法為:

是4 :本位減補數一半,下位加補數一次被乘數

是5 :本位減補數一半

是6 :本位減補數一半,下位減補數一次

例如: 456x758=345648 ( 758的補數是242 )算序:在被乘數個位6的本位減補數一半121。下位減242得45一4548 。在被乘數一十位數5的本位減121 ,得4-42448 。在被乘數百位4的本位減121,下位加242得345648(積)。

⑹ 一分鍾速演算法,多一點方法.

一分鍾速演算法口訣

第1節 個位數比十位數大1乘以9的運算
方法:前面因數的個位數是幾,就把第幾個手指彎回來,彎指左邊有幾個手指,則表示乘積的百位數是幾.彎指讀0,則表示乘積的十位數是0,彎指右邊有幾個手指,則表示乘積的個位數是幾.
口訣:個位是幾彎回幾,彎指左邊是百位,彎指讀0為十位,彎指右邊是個位.
例:34×9=306
第2節 個位數比十位數大任意數乘以9的運算
方法:凡是個位數比十位數大任意數乘以9時,仍是前面因數的個位數是幾,將第幾個手指彎回來,彎回來的手指不讀數,作為乘積的十位數與個位數的分界線.前面因數的十位數是幾,從左邊起數過幾個手指,則表示乘積的百位數就是幾,彎指左邊減去百位數,還剩幾個手指,則表示乘積的十位數是幾,彎指的右邊有幾個手指,則表示乘積的個位數是幾.
口訣:個位是幾彎回幾,原十位數為百位.左邊減去百位數,剩餘手指為十位.彎指作為分界線,彎指右邊是個位.
例:13×9=117
第3節 個位數和十位數相同乘以9
方法:凡是個位數和十位數相同乘以9時,它的個位數是幾則將第幾個手指彎回來.彎指左邊有幾個手指則表示乘積的百位數是幾.彎回來的手指讀9,作為乘積的十位數.彎指右邊有幾個手指,則表示乘積的個位數是幾.
口訣:個位是幾就彎幾,彎指左邊是百位.彎指讀9是十位,彎指右邊是個位.
例:88×9=792
第4節 個位數比十位數小乘積9的運算
方法:計算時只要將前面因數的十位數減1寫在百位上,前面因數的個位數是幾,寫在乘積的十位上,前面因數於與100的差數,寫在乘積的個位即可.
如果是80幾乘以9,因80幾與100差10幾,則在乘積的十位數上加1.如果是70幾乘以9,因70幾與100差20幾,則應在乘積的十位上加2.其他依次類推.
口訣:十位減1寫百位,原個位數寫十位.與百差幾寫個位,如差幾十加十位.
例:94×9=846 62×9=558
第二章 加法第1節 加大減差法
方法:在一個加式里,如果被加數或加數有一個接近整十、整百、整千等,都以整數來加,然後再減去這個差數(即補數),這樣計算起來十分方便.
口訣:用第一個加數加上第二個加數的整十、整百、整千……再減去第二個加數與整十、整百、整千……的差,等於和.
第2節 求只是兩個數字位置變換兩位數的和
方法:在一個兩位數的加式里,如果被加數的十位數和加數的個位數相同,而被加數的個位數又和加數的十位數相同,就將被加數的十位數和個位數相加之和再乘以11,即為這個加式的和.
口訣:(首+尾)×11=和
例:58+85=(5+8)×11=143
第3節 一目三行加法
方法:若三行數在一起相加,未加之前先虛進1,把第一位和末尾第二位之間的數看作中間數,湊9棄掉,剩幾寫幾,末尾一位數湊10棄掉,剩幾寫幾,即為所求三行之和.
口訣:提前虛進1,中間棄9,末尾棄10.
注意三個重點:
相加不夠9的用分段法:直接相加,並要提前虛進1;
中間數相加大於19的(棄19),前面多進1;
末位數相加大於20的(棄20),前邊多進1.
第三章 減法第1節 減大加差法
方法:在一個減式里,如果被減數的後幾位數值較小,而減數的後幾位數值較大,往往要向前借好幾位時,則應將減數中加上一個數(即補數)變成整數,從被減數中減去,然後再加上這個補數,即得最終差數.
口訣:用被減數減去減數的整十、整百、整千……再加上減數與整十、整百、整千……的差,等於差.
第2節 求只是數字位置顛倒兩個兩位數的差
方法:在一個兩位數的減式里,如果被減數的十位數值與減數的個位數值相同,而被減數的個位數值又與減數的十位數值相同時,用被減數的十位數值,減去被減數的個位數值,再乘以9等於差.
口訣:用被減數的十位數減去它的個位數,再乘以9,等於差.
例:74-47=(7-4)×9=27
第3節 求只是首尾換位,中間數相同的兩個三位數的差
方法:被減數的百位數減去個位數的差乘以9,分別將乘積的十位數值作為百位數,將乘積的個位數值仍作為個位數,兩數中間寫上一個9(即十位),便是這個減式的差.
口訣:用被減數的百位數減去它的個位數,再乘以9,得到一個兩位數,再在這個數中間寫上9,就等於這兩個數的差.
例:936-639=(9-6)×9=3×9=27=2(9)7
第4節 求兩個互補數的差
如何求一個數的補數?從十位數起向左邊,無論有多少位數,都給它湊成9,個位數(即末尾一個數)湊成10即可,這就是它的補數.
互補的概念:兩數相加(和)等於整10、整100、整1000……叫互補.
求補數的方法:前湊9,後湊10.
口訣:兩位互補的數相減:減50後,再乘以2等於差;
三位互補的數相減:減500後,再乘以2等於差;
四位互補的數相減:減5000後,再乘以2等於差;
……依此類推.
第四章 乘法第1節 十位數相同,個位數互補的乘法運算
方法:在一個兩位數的乘式里,凡是十位數相同,個位數互補時,在前面因數的十位數上加上一個1,再和另一個因數的十位數相乘,所得的積寫在乘積的前兩位.然後個位和個位相乘的積,寫在後兩位,即為乘式的最終積.
口訣:前面數十位加個1,和另一個數十位乘得積,後寫兩個個位積,即為所求最終積.
例:67×63=6×(6+1)……7×3=42……21=4221
第2節 十位數互補,個位數相同的乘法運算
方法:在一個兩位數的乘式里,如果前面因數和後面因數的十位數互補,它們的個位數相同時計算方法:首先十位數與十位數相乘的積再加上個位數寫前邊,後寫它們兩個數個位相乘之積,即為所求最終積.
口訣:十位相乘加個位,個位相乘寫後邊.十位數沒有要添個0(例2).
例1:76×36=(7×3+6)……6×6=27……36+2736
例2:83×23=(8×2+3)……3×3=19……(0)9=1909
第3節 一個數十位與個位互補,另一個數相同的乘法運算
方法:在互補的十位數上加個1,和另一數十位乘得積,後面寫上兩個數個位相乘的積,即為所求的最終積.
注意:
(1)補數在上面還是在下面,必須在互補數十位加個1,上下相乘,即可.
(2)對於多位數都相同的數,中間有幾個數(除首尾兩個),直接寫在積得中間即可.
口訣:互補數十位加個1,和另一數十位乘得積,後續兩個個位積,即為所求最終積.
第4節 11的乘法運算
方法:凡任何一個數乘以11時,最高位是幾,就向前位進幾.最高位數和第二位數相加寫在第二位,第二位數和第三位數相加寫在第三位.相加超10前面加1,個位是幾還寫幾,依此類推,就是11的乘積.
口訣:高位是幾則進幾,兩兩相加挨次寫.相加超十前加1,個位是幾還是幾.
例1:76×11=836
例2:86×11=946
第5節 十位數是1的乘法運算
方法:在一個兩位數的乘式里,如果兩個數十位都是1,個位是任意數,可將個位與個位相乘,得數寫後面;個位與個位相加之和寫中間;十位與十位相乘得積,寫前邊(有進位的加進位),即為這個乘式之積.
口訣:個位相乘寫個位,個位相加寫十位,有進位的加進位.十位相乘寫百位,有進位的加進位.
例:18×16=288
第6節 個位數是1的乘法運算
方法:在一個兩位數的乘式里,如果兩個數的個位數都是1,而且十位數是任意數時,可按三步計算:(1)將個位數相乘寫個位,(2)十位數相加寫十位,(3)十位數相乘寫百位(有進位的加進位).即為乘式的最終積.
口訣:個位相乘寫個位,十位相加寫十位,十位相乘寫高位(有進位的加進位).
例:91×81=7371
第7節 特殊數的乘法運算
方法:在一個乘式里,前面的因數縮小幾倍,後面的因數就擴大幾倍,其積不變.
口訣:任何數乘以15、35或45,就把這個任何數縮小2倍,再把15、35或45擴大2倍,其積不變.
任何數乘以25,就把這個任何數縮小4倍,再把25擴大4倍,其積不變.
任何數乘以125,就把這個任何數縮小8倍,再把125擴大8倍,其積不變.
例:78×45=(78÷2)×(45×2)=39×90=3510
第8節 任意兩位數乘以兩位數的萬能法
方法:任意兩位數乘以兩位數可分三步完成
(1)首先個位數上下相乘
(2)個位數和十位數交叉相乘相加(有進位的加進位)
(3)十位數上下相乘(有進位的加進位)
口訣:個位數上下相乘;個位數和十位數交叉相乘積相加(有進位的加進位);十位數上下相乘(有進位的加進位).
例:78×45

第9節 任意三位數乘以兩位數的萬能法
方法:(1)個位數上下相乘
(2)個位數和十位數交叉相乘積相加(有進位的加進位)
(3)後面因數的個位數和前面因數的百位數交叉相乘再加上十位數上下相乘(有進位的加進位)
(4)後面因數的十位數和前面因數的百位數交叉相乘(有進位的加進位).
口訣:個位數上下相乘;
個位數和十位數交叉相乘積相加(有進位的加進位);
個位數和百位數交叉相乘再加上十位數上下相乘(有進位的加進位);
十位數和百位數交叉相乘(有進位的加進位).
第10節 任意三位數乘以三位數的萬能法
方法和口訣相同:
(1)個位數上下相乘;
(2)個位數和十位數交叉相乘積相加(有進位的加進位);
(3)個位數和百位數交叉相乘加上十位數上下相乘(有進位的加進位);
(4)十位數和百位數交叉相乘積相加(有進位的加進位);
(5)百位數上下相乘(有進位的加進位).
第11節 數值越大越好算
999的平方
方法:只要是同位數9自乘,無論是多少位,只將9的位數減1位剩幾個9寫幾個9,後面寫一個8,前面有幾個9,後面就寫幾個0,末位只寫一個1,即為乘式最終積.如三個9自乘時,需寫兩個9,一個8,兩個0,一個1.而六位9自乘時,需寫五個9,一個8,五個0,一個1.
口訣:先求兩數各補數;交叉相減減補數(減一次)寫前邊;補數相乘寫後邊.
第12節 數值小了也好算
口訣:百位數乘以百位數寫高位;
百位數和個位數相乘的積,擴大兩倍寫中間;
個位數乘個位寫後面;
大於100要進位.

第五章 一位數乘任意多位數第1節 2的乘法運算
方法:凡2乘以5以下的數字,應直接寫出它的倍數來,遇到大於4的數字如5、6、7、8、9等,都要在前一位上加一個1.在算前一位(即高位)時,必須要看後位(即低位)是否大於5,決定有無進位,大者在前位上加1.
因為2×5=10(個位數是0) 2×6=12(個位數是2) 2×7=14(個位數是4)
2×8=16(個位數是6) 2×9=18(個位數是8)
口訣:1、2、3、4隻寫倍,後數大5或等於5前加1.5個為0、6個為2、7個為4、8個為6、9個為8要記牢,算前看後莫忘掉.
第2節 3的乘法運算
方法:3的進位律是3的循環小數,無論3後面有幾個3,但最後只要出現4或比4大的數,則前邊就要進1,無論3循環到幾個位數,最後是比3小的數字,都按不進位計算.
67也是一樣,大於6的循環小數就進2,即6以後無論循環幾位,只要後位有7或比7大的數就進2,6的循環小數是6或小於6以下都按不進2計算,但不進2必能進1.
數字上點圓點的,表示該數是循環小數,而後位數則表示無論前數循環幾位,而見到後數即按大者計算,無論循環到幾位不見後數,都按小於此數計算.
口訣:1、2、3數直寫倍,後大34前加1,大於67要進2,循環小數要記准:4個為2;5個為5;6個為8;7個為1;8個為4;9個為7.算前看後莫忘記.
(3的乘法運算) (4的乘法運算)
第3節 4的乘法運算
方法:凡是用4乘1和2時,應直接寫出它的倍數.4的進位律是大25進1,大50進2,大75進3.但必須記住:任何偶數乘以4時,其本個位都是它的補數.如見4是6;見6是4;見2是8;見8是2.而任何奇數乘以4時,其本個位都是它的湊數.如:1+4=5;3+2=5;5+0=5;7+8=15(個位是5);9+6=15(個位是5).
口訣:1數2數直寫倍,後大25前加1,大於5數要進2,後大75將3進,偶數個位皆互補,奇數個位湊5齊.
第4節 5的乘法運算
方法:根據乘法的性質原理:前面因數縮小幾倍,後面因數擴大幾倍,其積不變.凡是任何數乘以5時,先將前面因數縮小兩倍,再乘後面因數5,擴大兩倍變成10計算起來,就更簡便了.
口訣:任何數乘以5,等於它的半數加零.
例:368×5=(368÷2)×(5×2)=184×10=1840

第5節 6的乘法運算
方法:因為6是3的兩倍,那麼3的進位律是大34進1,大67進2.而6的進位律卻是大34進2,大67進4.
口訣:167數要進1;後大34將2進;大5一定要進3;後大67將4進;834數要進5;循環小數要記准.
(6的乘法運算) (7的乘法運算)
第6節 7的乘法運算
方法:7的進律較難記,必須從中找竅門.7的進位律是:
大於進1;大於進2;
大於進3;大於進5;大於進6.
口訣:1428續57.進2、14搬後位.進3,將頭按在尾.進4,57移前位.進5,將尾接在首.進6,分半前後移.偶數本個皆2倍,1-7;3-1;5本身;7-9;9-3要記牢,兩位三位先相比.
第7節 8的乘法運算
方法:4的兩倍,那麼4的進位律是大25進1;大50進2;大75進3;而8的進位律是大25進2;大5進4;大75進6.本身加5本個同的意思是:個位數相同.如:
1+5=6(1和6個位相同是8) 2+5=7(2和7個位相同是6)
3+5=8(3和8個位相同是4) 4+5=9(4和9個位相同是2) 5+5=10(5的個位是0)
口訣:125數要進1,後大25將2進.375數要進3,後數大5將4進.625數應進5,後大75將6進.875數要進7,本身加5本個同.1、6個8;2、7-6;3、8個4;4、9-2.
第8節 9的乘法運算
方法:9乘任何數時,要看兩位數,才能決定是進幾,前位數值小於後位數值時,前位的數值是幾則進幾(照數進).如果前位數值大於後位數時,無論是大幾,在前位上只減一個1,余數即是應進的數,即稱為前大於後要減1.
口訣:前小於後照數進,前大於後要減1.各數本個皆互補,算到末尾必減1.

乘法口訣速算方法:
兩位數相乘,在十位數相同、個位數相加等於10的情況下,如62×68=4216
計算方法:6×(6+1)=42(前積),2×8=16(後積).
一分鍾速算口訣中對特殊題的定理是:
任意兩位數乘以任意兩位數,只要魏式系數為「0」所得的積,一定是兩項數中的尾乘尾所得的積為後積,頭乘頭(其中一項頭加1的和)的積為前積,兩積相鄰所得的積.
如(1)33×46=1518(個位數相加小於10,所以十位數小的數字3不變,十位大的數4必須加1)
計算方法:3×(4+1)=15(前積),3×6=18(後積)
兩積組成1518
如(2)84×43=3612(個位數相加小於10,十位數小的數4不變 十位大的數8加1)
計算方法:4×(8+1)=36(前積),3×4=12(後積)
兩積相鄰組成:3612
如(3)48×26=1248
計算方法:4×(2+1)=12(前積),6×8=48(後積)
兩積組成:1248
如(4)245平方=
計算方法24×(24+1)=600(前積),5×5=25
兩積組成:
ab×cd 魏式系數=(a-c)×d+(b+d-10)×c
「頭乘頭,尾乘尾,合零為整,補余數.」
1.先求出魏式系數
2.頭乘頭(其中一項加一)為前積 (適應尾相加為10的數)
3.尾乘尾為後積.
4.兩積相連,在十位數上加上魏式系數即可 .
如:76×75,87×84吧,凡是十位數相同個位數相加為11的數,它的魏式系數一定是它的十位數的數 .
如:76×75魏式系數就是7,87×84魏式系數就是8.
如:78×63,59×42,它們的系數一定是十位數大的數減去它的個位數.
例如第一題魏式系數等於7-8=-1,第2題魏式系數等於5-9=-4,只要十位數差一,個位數相加為11的數一律可以採用以上方法速算.
例題1 76×75, 計算方法: (7+1)×7=56 5×6=30 兩積組成5630,然後十位數上加上7最後的積為5700.
例題2 78×63,計算方法:7×(6+1)=49,3×8=24,兩積組成4924,然後在十位數上2減去1,最後的積為4914
實例:
-如(1)33×46=1518(個位數相加小於10,所以十位數小的數字3不變,十位大的數4必須加1)-
-計算方法:3×(4+1)=15(前積),3×6=18(後積)-
-兩積組成1518-
-如(2)84×43=3612(個位數相加小於10,十位數小的數4不變 十位大的數8加1)-
-計算方法:4×(8+1)=36(前積),3×4=12(後積)-
-兩積相鄰組成:3612-
-如(3)48×26=1248-
-計算方法:4×(2+1)=12(前積),6×8=48(後積)-
-兩積組成:1248-
-如(4)245平方=-
-計算方法24×(24+1)=600(前積),5×5=25-
-兩積組成:-
(一)十幾與十幾相乘
十幾乘十幾,
方法最容易,
保留十位加個位,
添零再加個位積.
證明:設m、n 為1 至9 的任意整數,則
(10+m)(10+n)
=100+10m+10n+mn
=10〔10+(m+n)〕+mn.
例:17×l6
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272.
(二)十位數字相同、個位數字互補(和為10)的兩位數相乘
十位同,個位補,
兩數相乘要記住:
十位加一乘十位,
個位之積緊相隨.
證明:設m、n 為1 到9 的任意整數,則
(10m+n)〔10m+(10-n)〕
=100m(m+1)+n(10-n).
例:34×36
∵(3+1)×3=4×3=12(第三句),
個位之積4×6=24,
∴34×36=1224. (第四句)
注意:兩個數之積小於10 時,十位數字應寫零.
(三)用11 去乘其它任意兩位數
兩位數乘十一,
此數兩邊去,
中間留個空,
用和補進去.
證明:設m、n 為1 至9 的任意整數,則
(10m+n)×(10+1)=100m+10(m+n)+n.
例:36×ll
∵306+90=396,
∴36×11=396.
注意:當兩位數字之和大於10 時,要進到百位上,那麼百位數數字就成為m+1,
如:
84×11
∵804+12×10=804+120=924,
∴84×11=924.

⑺ 簡便方法運算公式有哪幾種

⑻ 5年級簡便方法計算

在遇到需要簡便計算的題目時,一般的說,解題思路可歸結為兩種:一是想可不可以直接或創造條件直接使用定理公式計算,二就是看是否可以逆用公式定理來進行運算。

另外,大家可以看到,簡便計算要善於讓一些數「無中生有」,在遇到一些特殊的整數、小數或分數乘除運算時,因此有必要記住這樣的數字關系:

①相乘是整十整百整千的數字組合:含有25和4的整數或小數,如2.5×4、0.25×4、0.25×40等;含有125和8的整數或小數,如1.25×8、12.5×8、125×0.8、 128×8等;

②特殊小數與分數值得轉化:1/8=0.125、 2/8=0.25、 3/8=0.375、 4/8=0.5、 5/8=0.625、 6/8=0.75、 7/8=0.875、 1/4=0.25、 3/4=0.75等。

⑼ 什麼叫補數,怎麼算補數

補數:若兩個數字之和為10,則稱這兩個數互為補數。1的補數是9,2的補數是8,3的補數是7,4的補數是6,5的補數是5,6的補數是4,7的補數是3,8的補數是2,9的補數是1。 這好像是在珠心算里的東西啊? 你的是計算機還是珠算啊?

希望採納

⑽ 什麼叫補數怎麼算補數

若兩數之和是10、100、1000、……10n的乘方數(n是正整數),這兩個數就互為補數。
例如:4和6、88和12、455和545等就互為補數。
看補數的方法:某數是幾位數,它的補數也是幾位數。若補數的有效數字前面有空位,用「0」補齊。互為補數的各對應位,末位相加為10,其餘各位相加為9,兩數之和,叫做它們的齊數。
某數與其補數、齊數的關系如下:
某數+補數=齊數
齊數-補數=某數
齊數-某數=補數

閱讀全文

與簡便方法周補數167怎麼算相關的資料

熱點內容
化肥中氮的含量檢測方法視頻 瀏覽:74
照片如何加水印方法 瀏覽:533
有點打呼嚕有什麼好方法 瀏覽:403
如何賞析詩句方法公式 瀏覽:722
快速融化冰塊的方法 瀏覽:129
手臂痛怎麼治療方法 瀏覽:483
days360函數的使用方法 瀏覽:631
治療濕尤有效方法 瀏覽:910
小米的快捷鍵設置在哪裡設置方法 瀏覽:770
用底線思維方法解決問題 瀏覽:278
檢測方法elisa法 瀏覽:192
遠離口臭的最佳治療方法 瀏覽:684
中葯及其制劑常用的純化方法 瀏覽:151
充電機使用方法步驟12V 瀏覽:1001
正確懷孕的方法 瀏覽:52
iphone6跳屏解決方法 瀏覽:897
怎麼鑒定玉的真假最簡單的方法 瀏覽:62
椰子鞋帶交叉方法視頻 瀏覽:528
畫軸力圖的簡便方法 瀏覽:903
教學方法包含了教學手段 瀏覽:346