㈠ 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
㈡ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
㈢ 簡便運算和混合運算有什麼區別嗎
簡便運算和混合運算有什麼區別嗎?
解答:
基本沒什麼區別
簡便運算是混合運算的一種
特殊性在於,有簡演算法則使運算簡便
混合計算有時也可以進行簡算,沒有的話可以用遞等式計演算法則來做
㈣ 簡便計算方法有哪些
加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
乘法交換律:a*b=b*a
乘法結合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
綜合算式(四則運算)應當注意的地方:
1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
(4)綜合算式簡便方法的概念擴展閱讀:
從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。
幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。
㈤ 簡便計算方法
簡便計算的方法一般有:
【加法簡便計算】
加法交換律,加法結合律,
【乘法簡便計算】
乘法交換律,乘法結合律,乘法分配律,
㈥ 混合運算簡便運演算法則
加減混合運算簡便方法公式為:
a+b-c。加減混合運算湊成整數來運算是最簡便的方法。加減法混合運算首先算括弧里的,其次是按照先後順序計算。
1、同級運算時,從左到右依次計算。
2、兩級運算時,先算乘除,後算加減。
3、有括弧時,先算括弧裡面的,再算括弧外面的。
4、有多層括弧時,先算小括弧里的,再算中括弧裡面的,再算大括弧裡面的,最後算括弧外面的。
5、要是有乘方,最先算乘方。
6、在混合運算中,先算括弧內的數 ,括弧從小到大,如有乘方先算乘方,然後從高級到低級。
㈦ 用簡便方法計算的綜合算式要150道有答案,六年級
乘法運算
乘法交換律,乘法結合律,乘法分配律的逆運算,乘法分配律
乘法交換律
兩個因數交換位置,積不變,這叫做乘法交換律。
字母公式:a×b=b×a
題例(簡算過程):12×8
=8×12
=96
乘法結合律
乘法結合律的概念為:先乘前兩個數,或先乘後兩個數,積不變。
字母公式:a×b×c=a×(b×c)
題例:30×25×4
=30×(25×4)
=30 ×100
=3000
乘法分配律
乘法分配律的概念為:兩個數的和,乘以一個數,可以拆開來算,積不變。
字母公式:(a+b)×c=a×c+b×c
例題:(2+3)×10
=3×10+2×10
=30+20
=50
乘法分配律的逆運算
乘法分配律的逆運算的概念為:一個數乘另一個數的積加它本身乘另一個數的積,可以把另外兩個數加起來再乘這個數
字母公式:ac+ab=a(c+b)
例題:3×4+3×5
=3×(4+5)
=3×9
= 27
㈧ 四則混合運算的簡便方法
常見的簡便運算的方法
1.湊整法
運用補充數或分解數的方法湊成整十、整百、整千的數在小數、分數中湊成整數。
例如:9.9 +99.9 +999.9= 10 + 100+1000-0.3
2.拆分法
把算式中的某個數拆分為能夠運算簡便的數。
例如:99×63=(100-1) x63
3.運用積(商)不變的性質
運用積不變的性質變形。
如: 2222×3333 +1111 ×3334
=1111 ×6666+1111 ×3334
=1111 × (6666 + 3334)
=1111 × 10000
= 11110000
4. 轉換運算
根據運算的定義和性質,有時可以用一種運算代替另一種運算。
用乘法代替加法:23 +23 +23 +37=23×3 +37 = 106
用乘法代替除法:1.24×0.25+2.76÷4
=1.24×0.25 +2.76×0.25
=(1.24 +2.76) ×0.25
=4×0.25
=1
用除法代替乘法:3.2×0.125=3.2÷8=0.4
㈨ 什麼是簡便運算
在數的運算中,有加(+)、減(-)、乘(×)、除(÷)四種運算,我們在數學上又為了能更簡便計算它們,簡稱稱作簡算,簡算有以下幾種(公式詳見在常用特殊數的乘積、及簡算公式) :
加法:(加法交換律) (加法結合律)(近似數)
乘法:(乘法交換律)(乘法結合律)(乘法分配律)(乘法分配律變化式(四個))
減法:(減法的基本性質)(近似數)
除法:(除法的基本性質)(商不變的性質)
(9)綜合算式簡便方法的概念擴展閱讀
1、乘法交換律:
乘法交換律的概念為:兩個因數交換位置,積不變。
字母公式:a×b=b×a
題例(簡算過程):12×8
=8×12
=96
2、乘法結合律:
乘法結合律的概念為:先乘前兩個數,或先乘後兩個數,積不變。
字母公式:a×b×c=a×(b×c)
題例:30×25×4
=30×(25×4)
=30 ×100
=3000
㈩ 綜合算式的所有簡便方法,例如乘法分配律、減法的性質、加法交換律等
一、加法
1.加法交換律
a+b=b+a
2.加法結合律
(a+b)+c=a+(b+c)
二、減法
1.減法的性質
a-b-c=a-(b+c)
三、乘法
1.乘法交換律
ab=ba
2.乘法結合律
(axb)xc =ax(bxc)
3.乘法分配律
[1].(a+b)xc=axc+bxc
[2].(a-b)xc=axc+bxc
[3].ax99=ax(99+1)-a
[4].(a+b-d)xc =axc+bxc-dxc
四、除法
1.除法的性質
a➗b➗c=a➗(bxc)
五、加減混合
a+(b-c)=a+b-c
a-(b-c)=a-b+c
a-(b+c)=a-b-c
1+2+3+...........+97+98+99+100
=50x100
=5050
19+199+1999+19999
=20+200+2000+20000-4
=22216