❶ 37乘18的簡便方法計算
37乘18的簡便方法計算如下:
37x18
=(30+7)x18
=30x18+7x18
=540+126
=666
乘法運算性質:
幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。例如: (137-125)×8=137×8-125×8=96。
❷ 簡便運算演算法
簡便運算如下:
5×9×(6/5-1/9)
=9×(5×6/5-5×1/9)
=9×(6-5/9)
=9×6-9×5/9
=54-5
=49
【(2)3798簡便方法計算擴展閱讀】
簡便運算,就是利用運算定律或者是運算性質,巧用特殊數之間的特性進行巧算
乘法分配律為:兩個數的和與一個數相乘,先將它們與這個數分別相乘,再相加,積不變.即:(a+b)×c=a×c+b×c.反過來則:a×c+b×c=(a+b)×c
簡便計算常用方法:
1、利用運算定律。利用加法的交換律和結合律,乘法的交換律、結合律和分配律,可以使計算簡便。
2、分解因數。有的特殊數相乘是可以得到整數的,比如25和4,125和8等等,在我們遇到這些數字時,可以想辦法把它們變成能得到整數的數字。
3、數字變形。有的列式中的數字不能用簡便方式,但是我們把一些數字變形後就可以採用簡便方式,這時我們就要給數字變形了。
4、等差數列。有些算式的相鄰數字的差是相同的,這時我們可以採用等差數列公式算式。
5、設數法。有些算式中,有的數字是相同的,但是式子又比較長,這時我們可以把相同的數字組成的算式設為一個字母,然後把式子中相應的換成字母,再計算,就簡便多了。
6、湊整法。有些小數與整數相差很少,又有規律,這是我們可以湊成整數計算。
7、拆分法。拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
❸ 99ⅹ38用簡便方法計算
利用乘法分配率,
變成(100-1)×38,
等於100×38-38×1=3762,
這樣簡便計算。
一般口算即可完成。
❹ 38×19的簡便方法
用38先乘20,再減去38
就是38x20-38=760-38=722
❺ 常用的簡便運算方法
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
❻ 37×98用簡便方法計算
如圖所示
❼ 375×8用簡便方法計算用脫式計算
375×8
=375×2×4
=750×4
=3000
❽ 3798-823-177的簡便計算怎麼算
個人演算法僅供參考
3798-823-177=2798
簡便演算法請看下圖:
希望能幫到你
如果滿意請採納
謝謝
❾ 簡便計算方法
簡便計算的方法一般有:
【加法簡便計算】
加法交換律,加法結合律,
【乘法簡便計算】
乘法交換律,乘法結合律,乘法分配律,