導航:首頁 > 知識科普 > 函數求極限怎麼判斷用什麼方法

函數求極限怎麼判斷用什麼方法

發布時間:2022-10-07 13:31:56

A. 函數極限怎麼

採用洛必達法則求極限。

洛必達法則是分式求極限的一種很好的方法,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。

洛必達法則:符合形式的分式的極限等於分式的分子分母同時求導。

存在准則

單調有界准則:單調增加(減少)有上(下)界的數列必定收斂。

在運用以上兩條去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數 ,並且要滿足極限是趨於同一方向 ,從而證明或求得函數 的極限值。

B. 如何判斷一個函數的極限是否存在

設f:(a,+∞)→R是一個一元實值函數,a∈R.如果對於任意給定的ε>0,存在正數X,使得對於適合不等式x>X的一切x,所對應的函數值f(x)都滿足不等式.
│f(x)-A│<ε ,
則稱數A為函數f(x)當x→+∞時的極限,記作
f(x)→A(x→+∞).

有些函數的極限很難或難以直接運用極限運演算法則求得,需要先判定。下面介紹幾個常用的判定數列極限的定理。
兩邊夾定理:(1)當x∈U(Xo,r)(這是Xo的去心鄰域,有個符號打不出)時,有g(x)≤f(x)≤h(x)成立
(2)g(x)—>Xo=A,h(x)—>Xo=A,那麼,f(x)極限存在,且等於A
不但能證明極限存在,還可以求極限,主要用放縮法。
單調有界准則:單調增加(減少)有上(下)界的數列必定收斂。
在運用它們去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數 ,並且要滿足極限是趨於同一方向 ,從而證明或求得函數 的極限值。

函數極限的方法


利用函數連續性:lim f(x) = f(a) x->a
(就是直接將趨向值帶出函數自變數中,此時要要求分母不能為0)
②恆等變形
當分母等於零時,就不能將趨向值直接代入分母,可以通過下面幾個小方法解決:
第一:因式分解,通過約分使分母不會為零。
第二:若分母出現根號,可以配一個因子是根號去除。
第三:以上我所說的解法都是在趨向值是一個固定值的時候進行的,如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)
當然還會有其他的變形方式,需要通過練習來熟練。
③通過已知極限

C. 由函數圖像怎樣判斷極限

函數圖像在一定區域內若某點左右兩邊的點均低於它則它為該區域內的極大值、若左右兩邊均高於它則它為極小值。

可以觀察函數,若是連續函數,就直接用四則運演算法,則以及復合函數極限運演算法,則去求極限值就可以,若極限不是反復振盪的或者不為無窮大,而是就等於一個常數,則極限存在。

若函數在該點不連續,則求在該點的左、右極限,若左右極限都存在,而且相等,都等於一個常數A,則這個函數在該點的極限存在,極限值也為A。

(3)函數求極限怎麼判斷用什麼方法擴展閱讀:

當k>0時,直線必通過一、三象限,從左往右,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,從左往右,y隨x的增大而減小;

當b>0時,直線必通過一、二象限;當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖象。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四 象限。

D. 總結求函數(數列)極限的方法

求數列極限可以歸納為以下三種形式:
★抽象數列求極限
這類題一般以選擇題的形式出現,因此可以通過舉反例來排除。此外,也可以按照定義、基本性質及運演算法則直接驗證。
★求具體數列的極限
a.可以參考以下幾種方法:
首先,用數學歸納法或不等式的放縮法判斷數列的單調性和有界性,進而確定極限存在性;其次,通過遞推關系中取極限,解方程,
從而得到數列的極限值.。
b.利用函數極限求數列極限
如果數列極限能看成某函數極限的特例,形如,則利用函數極限和數列極限的關系轉化為求函數極限,此時再用洛必達法則求解。
★求n項和或n項積數列的極限,主要有以下幾種方法:
a.利用特殊級數求和法
如果所求的項和式極限中通項可以通過錯位相消或可以轉化為極限已知的一些形式,那麼通過整理可以直接得出極限結果。
b.利用冪級數求和法
若可以找到這個級數所對應的冪級數,則可以利用冪級數函數的方法把它所對應的和函數求出,再根據這個極限的形式代入相應的變數求出函數值。
c.利用定積分定義求極限
若數列每一項都可以提出一個因子,剩餘的項可用一個通項表示,則可以考慮用定積分定義求解數列極限。
d.利用夾逼定理求極限
若數列每一項都可以提出一個因子,剩餘的項不能用一個通項表示,但是其餘項是按遞增或遞減排列的,則可以考慮用夾逼定理求解。
e.求n項數列的積的極限,一般先取對數化為項和的形式,然後利用求解項和數列極限的方法進行計算。

E. 函數極限怎麼求技巧

你好
第一種:利用函數連續性:lim f(x) = f(a) x->a
(就是直接將趨向值帶出函數自變數中,此時要要求分母不能為0)
第二種:恆等變形
當分母等於零時,就不能將趨向值直接代入分母,可以通過下面幾個小方法解決:
第一:因式分解,通過約分使分母不會為零。
第二:若分母出現根號,可以配一個因子使根號去除。
第三:以上我所說的解法都是在趨向值是一個固定值的時候進行的,如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)
當然還會有其他的變形方式,需要通過練習來熟練。
第三種:通過已知極限
特別是兩個重要極限需要牢記。

(5)函數求極限怎麼判斷用什麼方法擴展閱讀
有些函數的極限很難或難以直接運用極限運演算法則求得,需要先判定。下面介紹幾個常用的判定數列極限的定理。
1.夾逼定理:(1)當x∈U(Xo,r)(這是Xo的去心鄰域,有個符號打不出)時,有g(x)≤f(x)≤h(x)成立
(2)g(x)—>Xo=A,h(x)—>Xo=A,那麼,f(x)極限存在,且等於A
不但能證明極限存在,還可以求極限,主要用放縮法。
2.單調有界准則:單調增加(減少)有上(下)界的數列必定收斂。
在運用以上兩條去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數 ,並且要滿足極限是趨於同一方向 ,從而證明或求得函數 的極限值。
3.柯西准則
數列收斂的充分必要條件是任給ε>0,存在N(ε),使得當n>N,m>N時,都有|am-an|<ε成立。
望採納祝你好運

F. 如何確定函數是否有極限

在某一點是否有極限的判斷方法:
1、直接將該點的x代入表達式,只要沒有無窮大出現,而是一個具體的數值,
極限就存在;
2、如果是無窮大比上0,或一個具體的數,極限也存在;
3、如果是0比0型,需要化簡,或用羅畢達法則,逐步判斷,一定能得出結果,
但是過程可能很艱難;
4、如果是無窮大比無窮大型,方法同3;
5、如果左極限存在,右極限也存在,但是兩者不相等,則沒有極限;
6、左右極限存在且相等,即使該點無定義,我們也說極限存在。
7、如果是其他形式的不定式,需要用羅畢達法則判斷。

G. 求函數極限的方法有幾種具體怎麼求

1、利用函數的連續性求函數的極限(直接帶入即可)

如果是初等函數,且點在的定義區間內,那麼,因此計算當時的極限,只要計算對應的函數值就可以了。

H. 怎麼判斷函數極限是否存在

極限是否存在,主要看函數的間斷點,而間斷點往往都在函數定義域的限制點或者函數形式的變化點。

因為連續函數都有極限,所以,判斷函數是否連續,就選擇函數的分段連續的端點,檢驗左、右極限是否相等;凡是左、右極限相等的,就表示函數連續;而左、右極限不相等函數,肯定不連續。

常用的函數極限的性質有函數極限的唯一性、局部有界性、保序性以及函數極限的運演算法則和復合函數的極限等等。

相關信息

在運用以上兩條去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數 ,並且要滿足極限是趨於同一方向 ,從而證明或求得函數 的極限值。

數列{Xn}收斂的充分必要條件是:對於任意給定的正數ε,總存在正整數N,使得當m>N,n > N時,且m≠n,把滿足該條件的{Xn}稱為柯西序列,那麼上述定理可表述成:數列{Xn}收斂,當且僅當它是一個柯西序列。

I. 求函數極限有什麼方法

1、利用定義求極限。
2、利用柯西准則來求。
柯西准則:要使{xn}有極限的充要條件使任給ε>0,存在自然數N,使得當n>N時,對於
任意的自然數m有|xn-xm|<ε.
3、利用極限的運算性質及已知的極限來求。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夾擠定理。
5、利用變數替換求極限。
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用兩個重要極限來求極限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用單調有界必有極限來求。
8、利用函數連續得性質求極限。
9、用洛必達法則求,這是用得最多的。
10、用泰勒公式來求,這用得也很經常。

J. 到底怎樣判斷一個函數的極限是否存在呢

1、結果若是無窮小,無窮小就用0代入,0也是極限。

2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。

3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。

4、若分子分母各自的極限都是無窮小,那就必須用羅畢達方法確定最後的結果。

(10)函數求極限怎麼判斷用什麼方法擴展閱讀:

極限存在准則:

1、夾逼定理:

(1)當x∈U(Xo,r)(這是Xo的去心鄰域,有個符號打不出)時,有g(x)≤f(x)≤h(x)成立。

(2)g(x)—>Xo=A,h(x)—>Xo=A,那麼,f(x)極限存在,且等於A。不但能證明極限存在,還可以求極限,主要用放縮法。

2、單調有界准則:單調增加(減少)有上(下)界的數列必定收斂。

在運用以上兩條去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數,並且要滿足極限是趨於同一方向,從而證明或求得函數的極限值。

3、柯西准則:

數列收斂的充分必要條件是任給ε>0,存在N(ε),使得當n>N,m>N時,都有|am-an|<ε成立。

閱讀全文

與函數求極限怎麼判斷用什麼方法相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:63
五菱p1171故障碼解決方法 瀏覽:858
男士修護膏使用方法 瀏覽:547
電腦圖標修改方法 瀏覽:607
濕氣怎麼用科學的方法解釋 瀏覽:539
910除以26的簡便計算方法 瀏覽:805
吹東契奇最簡單的方法 瀏覽:705
對腎臟有好處的食用方法 瀏覽:100
電腦四線程內存設置方法 瀏覽:514
數字電路通常用哪三種方法分析 瀏覽:15
實訓課程的教學方法是什麼 瀏覽:527
苯甲醇乙醚鑒別方法 瀏覽:84
蘋果手機微信視頻聲音小解決方法 瀏覽:701
控制箱的連接方法 瀏覽:75
用什麼簡單的方法可以去痘 瀏覽:789
快速去除甲醛的小方法你知道幾個 瀏覽:803
自行車架尺寸測量方法 瀏覽:124
石磨子的製作方法視頻 瀏覽:153
行善修心的正確方法 瀏覽:403
土豆燉雞湯的正確方法和步驟 瀏覽:276