⑴ 確定基因的方法有哪些
這個可以寫一本書了……
主要有兩種,正向和反向。正向是知道功能,找相應的基因,通常會通過重組試驗先確定基因位於哪條染色體上,再觀察基因和一些遺傳標記的連鎖關系,把基因定位到一個一般10-100M的區域上。之後把這個區域克隆出來尋找開放式閱讀框(ORF),克隆出基因,表達檢驗產物。之後要在生物體內做剔除和過表達試驗以確認基因功能。
反向是知道一個基因,找它的功能。這是人類基因組計劃之後大量應用的一個方法,先做基因組測序,做基因組注釋,選取可能的基因,克隆表達做轉基因生物驗證功能,這個都是老一套的了。
還有一種叫遺傳篩選的方法,也很常用。就是先在動物體內誘變基因,然後尋找出相關表型的動物(比如說要尋找關於翅膀的,就在果蠅裡面做,把翅膀發育不良的挑出來),定位基因,驗證功能。這個是屬於正向的一種方法,非常有用,拿了好幾個諾貝爾獎呢
⑵ 基因功能鑒定的方法有哪些
基因功能鑒定的方法
1、轉基因技術
2、基因敲出技術
3、基因沉默技術
轉基因技術是將外源基因導入受體細胞,室外源基因隨即整合到受體細胞的染色體上,並隨者受體細胞的分裂並將外源基因遺傳給後代,從而獲得攜帶外源基因的轉基因生物方法。
基因敲出技術是採用動物胚胎肝細胞介導定向基因轉移,使動物體內的特定基因喪失功能的技術。
基因沉默技術是針對mRNA的操作,旨在抑制基因表達產物的生成。
⑶ 基因檢測方法有哪些
基因是遺傳的基本單元,攜帶有遺傳信息的DNA或RNA序列,通過復制,把遺傳信息傳遞給下一代,指導蛋白質的合成來表達自己所攜帶的遺傳信息,從而控制生物個體的性狀表達。基因檢測是通過血液、其他體液、或細胞對DNA進行檢測的技術,是取被檢測者外周靜脈血或其他組織細胞,擴增其基因信息後,通過特定設備對被檢測者細胞中的DNA分子信息作檢測,分析它所含有的基因類型和基因缺陷及其表達功能是否正常的一種方法,從而使人們能了解自己的基因信息,明確病因或預知身體患某種疾病的風險。
基因檢測可以診斷疾病,也可以用於疾病風險的預測。疾病診斷是用基因檢測技術檢測引起遺傳性疾病的突變基因。應用最廣泛的基因檢測是新生兒遺傳性疾病的檢測、遺傳疾病的診斷和某些常見病的輔助診斷。
一般有三種基因檢測方法:生化檢測、染色體分析和DNA分析。
1.生化檢測
生化檢測是通過化學手段,檢測血液、尿液、羊水或羊膜細胞樣本,檢查相關蛋白質或物質是否存在,確定是否存在基因缺陷。用於診斷某種基因缺陷,這種缺陷是因某種維持身體正常功能的蛋白質不均衡導致的,通常是檢測測試蛋白質含量。還可用於診斷苯丙酮尿症等。
2.染色體分析
染色體分析直接檢測染色體數目及結構的異常,而不是檢查某條染色體上某個基因的突變或異常。通常用來診斷胎兒的異常。
常見的染色體異常是多一條染色體,檢測用的細胞來自血液樣本,若是胎兒,則通過羊膜穿刺或絨毛膜絨毛取樣獲得細胞。將之染色,讓染色體凸顯出來,然後用高倍顯微鏡觀察是否有異常。
3.DNA分析
DNA分析主要用於識別單個基因異常引發的遺傳性疾病,如亨廷頓病等。DNA分析的細胞來自血液或胎兒細胞。
基因檢測可以分為以下五類:
1.基因篩檢
主要是針對特定團體或全體人群進行檢測。大多數通過產前或新生兒的基因檢測以達到篩檢的目的。
2.生殖性基因檢測
在進行體外人工授精階段可運用,篩檢出胚胎是否帶有基因變異,避免胎兒患有遺傳性疾病。
3.診斷性檢測
多數用來協助臨床用葯指導。
4.基因攜帶檢測
基因攜帶者如果與某些特殊基因相結合,可能會導致下一代患基因疾病,通過基因攜帶者的檢測可篩檢出此種可能,作為基因攜帶者婚前檢查、生育時的參考。
5.症狀出現前的檢測
檢測目的是了解健康良好者是否帶有某種突變基因,而此基因與特定疾病的發生有密切的聯系。
臨床意義
1.用於疾病的診斷
如對結核桿菌感染的診斷,以前主要依靠痰、糞便或血液培養,整個檢驗流程需要在兩周以上,採用基因診斷的方法,不僅敏感性大大提高,而且在短時間內就能得到結果。
2.了解自身是否有家族性疾病的致病基因,預測患病風險
資料證實10%~15%的癌症與遺傳有關,糖尿病、心腦血管疾病等多種疾病都與遺傳因素有關。如具有癌症或多基因遺傳病(如老年痴呆、高血壓、糖尿病等)的人可找出致病的遺傳基因,就能夠有針對性地調整生活方式,預防或者延緩疾病的發生。
3.正確選擇葯物,避免濫用葯物和葯物不良反應
由於個體遺傳基因上的差異,不同的人對外來物質產生的反應也會有所不同,因此部分患者使用正常劑量的葯物時,可能會出現葯物過敏、紅腫發疹的現象。根據基因檢測的結果,可制定特定的治療方案,從而科學地指導使用葯物,避免葯物毒副反應。
⑷ 基因檢測有哪些方法
基因檢測可以診斷疾病,也可以用於疾病風險的預測。疾病診斷是用基因檢測技術檢測引起遺傳性疾病的突變基因。目前應用最廣泛的基因檢測是新生兒遺傳性疾病的檢測、遺傳疾病的診斷和某些常見病的輔助診斷。中源協和目前有1000多種遺傳性疾病可以通過基因檢測技術做出診斷。
近年來令人非常興奮的是預測性基因檢測的開展。利用基因檢測技術在疾病發生前就發現疾病發生的風險,提早預防、或採取有效的干預措施。目前已經有20多種疾病可以用基因檢測的方法進行預測。
檢測的時候,先把受檢者的基因從血液或其他細胞中提取出來。然後用可以識別可能存在突變的基因的引物和pcr技術將這部分基因復制很多倍,用有特殊標記物的突變基因探針方法、酶切方法、基因序列檢測方法等判斷這部分基因是否存在突變或存在敏感基因型。
我們通常的醫療檢測手段是針對疾病的具體症狀或已有病變進行檢測。現代科學的發展促進了醫療檢驗手段的不斷發展,可以深入細微之處對疾病進行縱向或橫向的剖析。
⑸ 基因檢測包括哪些項目
1.生化檢測:通過化學手段,檢測血液、尿液、羊水或羊膜細胞樣本,檢查相關蛋白質或物質是否存在,確定是否存在基因缺陷。用於診斷某種基因缺陷,這種缺陷是因某種維持身體正常功能的蛋白質不均衡導致的,通常是檢測測試蛋白質含量。還可用於診斷苯丙酮尿症等。
2.染色體分析:染色體分析直接檢測染色體數目及結構的異常,而不是檢查某條染色體上某個基因的突變或異常。通常用來診斷胎兒的異常。
3.DNA分析:DNA分析主要用於識別單個基因異常引發的遺傳性疾病,如亨廷頓病等。DNA分析的細胞來自血液或胎兒細胞。
基因檢測可以分為以下五類:
1.基因篩檢:主要是針對特定團體或全體人群進行檢測。大多數通過產前或新生兒的基因檢測以達到篩檢的目的。
2.生殖性基因檢測:在進行體外人工授精階段可運用,篩檢出胚胎是否帶有基因變異,避免胎兒患有遺傳性疾病。
3.診斷性檢測:多數用來協助臨床用葯指導。
4.基因攜帶檢測:基因攜帶者如果與某些特殊基因相結合,可能會導致下一代患基因疾病,通過基因攜帶者的檢測可篩檢出此種可能,作為基因攜帶者婚前檢查、生育時的參考。
5.症狀出現前的檢測:檢測目的是了解目前健康良好者是否帶有某種突變基因,而此基因與特定疾病的發生有密切的聯系。
⑹ 基因診斷的方法有哪幾種
基因診斷(gene diagnosis)是以探測基因的存在,分析基因的類型和缺陷及其表達功能是否正常,從而達到診斷疾病的一種方法。它是繼形態學、生物化學和免疫學診斷之後的第四代診斷技術,它的誕生與發展得益於分子生物學理論和技術的迅速發展。
常用基因診斷技術:
一、Southern印跡法(Southern blot)
基本原理是:硝酸纖維膜或尼龍濾膜對單鏈DNA的吸附能力很強,當電泳後凝膠經過DNA變性處理,覆以上述濾膜,再於其上方壓上多層乾燥的吸水紙,藉助它對深鹽溶液的上吸作用,凝膠上的單鏈DNA將轉移到濾膜上。轉移是原位的,即DNA片段的位置保持不變。轉移結束後,經過80℃烘烤的DNA,將原位地固定於膜上。
當含有特定基因片段已原位轉移到膜上後,即可與同位素標記了的探針進行雜交,並將雜交的信號顯示出來。雜交通常在塑料袋中進行,袋內放置上述雜交濾膜,加入含有變性後探針的雜交溶液後,在一定溫度下讓單鏈探針DNA與固定於膜上的單鏈基因DNA分子按鹼基到互補原理充分結合。結合是特異的,例如只有β珠蛋白基因DNA才能結合上β珠蛋白的探針。雜交後,洗去膜上的未組合的探針,將Ⅹ線膠片覆於膜上,在暗盒中日光進行放射自顯影。結合了同位素標記探針的DNA片段所在部位將顯示黑色的雜交帶,基因的缺失或突變則可能導致帶的缺失或位置改變。
二、聚合酶鏈反應
近年來,基因分析和基因工程技術有了革命性的突破,這主要歸功於聚合酶鏈反應(polymerase chain reaction,PCR)的發展和應用。應用PCR技術可以使特定的基因或DNA片段在短短的2-3小時內體外擴增數十萬至百萬倍。擴增的片段可以直接通過電泳觀察,也可用於進一步的分析。這樣,少量的單拷貝基因不需通過同位素提高其敏感性來觀察,而通過擴增至百萬倍後直接觀察到,而且原先需要一、二周才能作出的診斷可以縮短至數小時。
三、擴增片段長度多態性
小衛星DNA和微衛星DNA的長度多態性可以通過PCR擴增後電泳來檢出,並用於致病基因的連鎖分析,這種診斷方法稱為擴增片段長度多態性(amplified fragment length polymorphism,Amp-FLP)連鎖分析法。PCR擴增後,產物即等位片段之間的差別有時只有幾個核苷酸,故需用聚丙烯醯胺凝膠電泳分離鑒定。此法多用於突變性質不明的連鎖分析.
四、等位基因的特異寡核苷酸探針診斷法
當基因的突變部位和性質已完全明了時,可以合成等基因特異的寡核苷酸探針(allele-specific oligonucleotide,ASO)用同位素或非同位素標記進行診斷。探針通常為長20bp左右的核苷酸。用於探測點突變時一般需要合成兩種探針,與正常基因序列完全一致,能與之穩定地雜交,但不能與突變基因序列雜交;另一種與突變基因序列一致,能與突變基因序列穩定雜交,但不能與正常基因序列穩定雜交,這樣,就可以把只有一個鹼基發生了突變的基因區別開來.
PCR可結合ASO,即PCR-ASO技術,即先將含有突變點的基因有關片段進行體外擴增,然後再與ASO探針作點雜交,這樣大大簡化了方法,節約了時間,而且只要極少量的基因組DNA就可進行。
五、單鏈構象多態性診斷法
單鏈構象多態性(signle strand conformation polymorphism,SSCP)是指單鏈DNA由於鹼基序列的不同可引起構象差異,這種差異將造成相同或相近長度的單鏈DNA電泳遷移率不同,從而可用於DNA中單個鹼基的替代、微小的缺失或手稿的檢測。用SSCP法檢查基因突變時,通常在疑有突變的DNA片段附近設計一對引物進行PCR擴增,然後將擴增物用甲醯胺等變性,並在聚丙烯醯胺凝膠中電泳,突變所引起的DNA構象差異將表現為電泳帶位置的差異,從而可據之作出診斷。
⑺ 基因檢測有哪些方法
基因檢測的方法不勝枚舉,基本的步驟是樣本的獲取(包括血液、唾液、組織樣本等)——處理(如DNA的提取與純化、文庫構建等)——序列測定——序列分析——結果解讀——報告撰寫。廣泛應用的核酸序列測定方法是直接測序法,目前最先進而且被廣泛使用的方法和儀器有第一代的Sanger測序法,第二代的高通量測序法(如美國Illumina公司的Hiseq測序儀和華大基因子公司CompleteGenomics開發的測序方法)等。目前也已出現被稱為第三代測序技術的方法,如單分子實時DNA測序法。
第一代:sanger測序
第一代的Sanger測序技術的優點是,測序讀長長,能達到800-1K bp,且測序用時短,只需要幾十分鍾即可完成一次測序,測序准確度高,目前仍是測序的金標准;缺點是通量低、成本高。
第二代:高通量測序(NGS)
第二代測序技術的優點是測序通量和效率高,成本低廉;缺點是測序讀長普遍較短,且用時較長。以目前應用最為廣泛的測序儀之一的illumina公司Hiseq2000測序儀為例,其一次測序的數據產出量可達500
Gb,但讀長為100 bp,且需要耗時14天左右。而Life technology公司的IonProton測序儀是邊合成邊通過反應體系電位的微小差別來測定鹼基序列。
第三代:單分子/納米孔測序
由於第二代技術存在短讀長和耗時長的缺陷,人們希望第三代測序技術能解決這些缺陷,所以第三代測序技術在長讀長和短耗時出發,目前尚未完全成熟,市場應用面還不算廣,而且各種測序儀之間差異較大,測序原理也是各出奇招。如Pacific Bioscience公司則是通過在PCR合成DNA的過程中,用顯微鏡檢測由熒光基團標記的dNTP反應後釋放出的熒光來測序。而一直未投產的牛津大學研發的測序儀,則是通過檢測由核酸外切酶剪切DNA時,「掉落」到檢測微孔的核苷酸來測序。
⑻ 目的基因的鑒定方法有哪些
基因的鑒定方法:
間接識別法
在基因的間接識別法(Extrinsic Approach)中,人們利用已知的mRNA或蛋白質序列為線索在DNA序列中搜尋所對應的片段。由給定的mRNA序列確定唯一的作為轉錄源的DNA序列;而由給定的蛋白質序列,也可以由密碼子反轉確定一族可能的DNA序列。因此,在線索的提示下搜尋工作相對較為容易,搜尋演算法的關鍵在於提高效率,並能夠容忍由於測序不完整或者不精確所帶來的誤差。BLAST是目前以此為目的最廣泛使用的軟體之一。
若DNA序列的某一片段與mRNA或蛋白質序列具有高度相似性,這說明該DNA片段極有可能是蛋白編碼基因。但是,測定mRNA或蛋白質序列的成本高昂,而且在復雜的生物體中,任意確定的時刻往往只有一部分基因得到了表達。這意味著從任何單個細胞的mRNA和蛋白質上都只能獲得一小部分基因的信息;要想得到更為完整的信息,不得不對成百上千個不同狀態的細胞中的mRNA和蛋白質測序。這是相當困難的。比如,某些人類基因只在胚胎或胎兒時期才得到表達,對它們的研究就會受到道德因素的制約。
盡管有以上困難,對人類自身和一些常見的實驗生物如老鼠和酵母菌,人們已經建立了大量轉錄和蛋白質序列的資料庫。如RefSeq資料庫,Ensembl資料庫等等。但這些資料庫既不完整,也含有相當數量的錯誤。
從頭計演算法
鑒於間接識別法的種種缺陷,僅僅由DNA序列信息預測蛋白質編碼基因的從頭計演算法(Ab Initio Approach)就顯得十分重要了。一般意義上基因具有兩種類型的特徵,一類特徵是「信號」,由一些特殊的序列構成,通常預示著其周圍存在著一個基因;另一類特徵是「內容」,即蛋白質編碼基因所具有的某些統計學特徵。使用Ab Initio方法識別基因又稱為基因預測。通常我們仍需藉助實驗證實預測的DNA片段是否具有生物學功能。
在原核生物中,基因往往具有特定且容易識別的啟動子序列(信號),如Pribnow盒和轉錄因子。與此同時,構成蛋白質編碼的序列構成一個連續的開放閱讀框(內容),其長度約為數百個到數千個鹼基對(依據該長度區間可以篩選合適的密碼子)。除此之外,原核生物的蛋白質編碼還具有其他一些容易判別的統計學的特徵。這使得對原核生物的基因預測能達到相對較高的精度。
對真核生物(尤其是復雜的生物如人類)的基因預測則相當有挑戰性。一方面,真核生物中的啟動子和其他控制信號更為復雜,還未被很好的了解。兩個被真核生物基因搜尋器識別到的訊號例子有CpG islands及poly(A) tail的結合點。
另一方面,由於真核生物所具有的splicing機制,基因中一個蛋白質編碼序列被分為了若干段(外顯子),中間由非編碼序列連接(基因內區)。人類的一個普通蛋白質編碼基因可能被分為了十幾個外顯子,其中每個外顯子的長度少於200個鹼基對,而某些外顯子更可能只有二三十個鹼基對長。因而蛋白質編碼的一些統計學特徵變得難於判別。
高級的基因識別演算法常使用更加復雜的概率論模型,如隱馬爾可夫模型。Glimmer是一個廣泛應用的高級基因識別程序,它對原核生物基因的預測已非常精確,相比之下,對真核生物的預測則效果有限。GENSCAN計劃是一個著名的例子。
比較基因組學
由於多個物種的基因組序列已完全測出,使得比較基因組學得以發展,並產生了新的基因識別的方法。該方法基於如下原理:自然選擇的力量使得基因和DNA序列上具有生物學功能的其他片段較其他部分有較慢的變異速率,在前者的變異更有可能對生物體的生存產生負面影響,因而難以得到保存。因此,通過比較相關的物種的DNA序列,我們能夠取得預測基因的新線索。2003年,通過對若干種酵母基因組的比較,人類對原先的基因識別結果作了較大的修改;類似的方法也正在應用於人類的基因組研究,並可能在將來的若干年內取得成果。
⑼ 基因檢測有哪些方法
知乎用戶
基因檢測的方法不勝枚舉,基本的步驟是樣本的獲取(包括血液、唾液、組織樣本等)——處理(如DNA的提取與純化、文庫構建等)——序列測定——序列分析——結果解讀——報告撰寫。廣泛應用的核酸序列測定方法是直接測序法,目前最先進而且被廣泛使用的方法和儀器有第一代的Sanger測序法,第二代的高通量測序法(如美國Illumina公司的Hiseq測序儀和華大基因子公司CompleteGenomics開發的測序方法)等。目前也已出現被稱為第三代測序技術的方法,如單分子實時DNA測序法。
第一代:sanger測序
第一代的Sanger測序技術的優點是,測序讀長長,能達到800-1K bp,且測序用時短,只需要幾十分鍾即可完成一次測序,測序准確度高,目前仍是測序的金標准;缺點是通量低、成本高。
第二代:高通量測序(NGS)
第二代測序技術的優點是測序通量和效率高,成本低廉;缺點是測序讀長普遍較短,且用時較長。以目前應用最為廣泛的測序儀之一的illumina公司Hiseq2000測序儀為例,其一次測序的數據產出量可達500
Gb,但讀長為100 bp,且需要耗時14天左右。而Life technology公司的IonProton測序儀是邊合成邊通過反應體系電位的微小差別來測定鹼基序列。
第三代:單分子/納米孔測序
由於第二代技術存在短讀長和耗時長的缺陷,人們希望第三代測序技術能解決這些缺陷,所以第三代測序技術在長讀長和短耗時出發,目前尚未完全成熟,市場應用面還不算廣,而且各種測序儀之間差異較大,測序原理也是各出奇招。如Pacific Bioscience公司則是通過在PCR合成DNA的過程中,用顯微鏡檢測由熒光基團標記的dNTP反應後釋放出的熒光來測序。而一直未投產的牛津大學研發的測序儀,則是通過檢測由核酸外切酶剪切DNA時,「掉落」到檢測微孔的核苷酸來測序。
⑽ 如何對目的基因進行檢測與鑒定
可以從三方面對目的基因進行鑒定:
1、直接測定:按照目的基因組成製作DNA分子探針進行配對。
2、mRNA測定:根據目的基因組得出其轉錄的mRNA組成,利用探針檢測。
3、蛋白測定:可應用PCR相應技術測定目的基因翻譯的相關蛋白,也可採用免疫化學法導入蛋白抗體檢測蛋白。
(10)鑒定基因的主要方法包括哪些擴展閱讀:
對目的基因進行鑒定和檢測的多種方法:
基因鑒定技術是一項生物學檢測技術,人體細胞有總數約為30億個鹼基對的DNA,每個人的DNA都不完全相同,人與人之間不同的鹼基對數目達幾百萬之多,因此通過分子生物學方法顯示的DNA圖譜也因人而異,由此可以識別不同的人。
所謂「DNA指紋」,就是把DNA作為像指紋那樣的獨特特徵來識別不同的人。由於DNA是遺傳物質,因此通過對DNA鑒定還可以判斷兩個人之間的親緣關系。
基因鑒定的原理其實是DNA分子雜交,這種分子雜交是在緩沖液中進行的,由於DNA分子雜交時,兩個分子相遇的機會不是很大,所以就需要眾多的帶有目的基因的DNA與待測的DNA分子。
而PCR技術就是將目的基因進行擴增的一種技術手段,所以在進行基因鑒定時並不是直接進行鑒定的,而是先進行PCR技術將目的基因擴增再進行鑒定。
網路-對目的基因進行檢測與鑒定