1. 數據採集技術的方法有哪些
大數據技術在數據採集方面採用了哪些方法:
1、離線採集:
工具:ETL;
在數據倉庫的語境下,ETL基本上就是數據採集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需要針對具體的業務場景對數據進行治理,例如進行非法數據監測與過濾、格式轉換與數據規范化、數據替換、保證數據完整性等。
2、實時採集:
工具:Flume/Kafka;
實時採集主要用在考慮流處理的業務場景,比如,用於記錄數據源的執行的各種操作活動,比如網路監控的流量管理、金融應用的股票記賬和 web 伺服器記錄的用戶訪問行為。在流處理場景,數據採集會成為Kafka的消費者,就像一個水壩一般將上游源源不斷的數據攔截住,然後根據業務場景做對應的處理(例如去重、去噪、中間計算等),之後再寫入到對應的數據存儲中。這個過程類似傳統的ETL,但它是流式的處理方式,而非定時的批處理Job,些工具均採用分布式架構,能滿足每秒數百MB的日誌數據採集和傳輸需求
3、互聯網採集:
工具:Crawler, DPI等;
Scribe是Facebook開發的數據(日誌)收集系統。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的採集。
除了網路中包含的內容之外,對於網路流量的採集可以使用DPI或DFI等帶寬管理技術進行處理。
4、其他數據採集方法
對於企業生產經營數據上的客戶數據,財務數據等保密性要求較高的數據,可以通過與數據技術服務商合作,使用特定系統介面等相關方式採集數據。比如八度雲計算的數企BDSaaS,無論是數據採集技術、BI數據分析,還是數據的安全性和保密性,都做得很好。
數據的採集是挖掘數據價值的第一步,當數據量越來越大時,可提取出來的有用數據必然也就更多。只要善用數據化處理平台,便能夠保證數據分析結果的有效性,助力企業實現數據驅動~
2. 數據採集的基本方法
常見的數據採集方式有問卷調查、查閱資料、實地考查、試驗。
1、問卷調查:問卷調查是數據收集最常用的一種方式,因為它的成本比較低,而且得到的信息也會比較全面。
2、查閱資料:查閱資料是最古老的數據收集的方式,通過查閱書籍,記錄等資料來得到自己想要的數據。
3、實地考查:實地考察是到指定的地方去做研究,指為明白一個事物的真相,勢態發展流程,而去實地進行直觀的,局部進行詳細的調查。
4、實驗:實驗收集數據的優點是數據的准確性很高,而缺點是未知性很大,不管實驗的周期還是實驗的結果都是不確定性的。
3. 數據採集的方法有哪些 數據採集的基本方法
1、數據採集根據採集數據的類型可以分為不同的方式,主要方式有:感測器採集、爬蟲、錄入、導入、介面等。
2、數據採集的基本方法:
(1)感測器監測數據:通過感測器,即現在應用比較廣的一個詞:物聯網。通過溫濕度感測器、氣體感測器、視頻感測器等外部硬體設備與系統進行通信,將感測器監測到的數據傳至系統中進行採集使用。
(2)第二種是新聞資訊類互聯網數據,可以通過編寫網路爬蟲,設置好數據源後進行有目標性的爬取數據。
(3)第三種通過使用系統錄入頁面將已有的數據錄入至系統中。
(4)第四種方式是針對已有的批量的結構化數據可以開發導入工具將其導入系統中。
(5)第五種方式,可以通過API介面將其他系統中的數據採集到本系統中。
4. 數據採集的方法有哪兩類
1、離線搜集:
工具:ETL;
在數據倉庫的語境下,ETL基本上便是數據搜集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需求針對具體的事務場景對數據進行治理,例如進行不合法數據監測與過濾、格式轉換與數據規范化、數據替換、確保數據完整性等。
2、實時搜集:
工具:Flume/Kafka;
實時搜集首要用在考慮流處理的事務場景,比方,用於記錄數據源的履行的各種操作活動,比方網路監控的流量辦理、金融運用的股票記賬和 web 伺服器記錄的用戶訪問行為。在流處理場景,數據搜集會成為Kafka的顧客,就像一個水壩一般將上游源源不斷的數據攔截住,然後依據事務場景做對應的處理(例如去重、去噪、中心核算等),之後再寫入到對應的數據存儲中。
3、互聯網搜集:
工具:Crawler, DPI等;
Scribe是Facebook開發的數據(日誌)搜集體系。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規矩,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的搜集。
除了網路中包含的內容之外,關於網路流量的搜集能夠運用DPI或DFI等帶寬辦理技術進行處理。
4、其他數據搜集方法
關於企業生產經營數據上的客戶數據,財務數據等保密性要求較高的數據,能夠通過與數據技術服務商合作,運用特定體系介面等相關方式搜集數據。比方八度雲核算的數企BDSaaS,無論是數據搜集技術、BI數據剖析,還是數據的安全性和保密性,都做得很好。
5. 數據採集技術的方法有哪些
數據採集(D A Q).,是指從感測器和其它待測設備等模擬和數字被測單元中自動採集非電量信號,送到上位機中進行分析,處理,數據採集系統是結合基於計算機或者其他專用測試平台的測量軟體產品來實現靈活的、用戶自定義的測量系統。
數據採集,又.稱數據獲取,是利用一種裝置,從系統外部採集數據並輸入到系統內部的個介面。數據採集技術廣泛應用在各個領域。比如攝像頭,麥克風,都是數據釆集工具。
被採集數據是已被轉換為電訊號的各種物理量,如溫度、水位、風速、壓力等,可以模擬量,也可以是數字量。採集一般是采樣方式,即隔一定時間(稱采樣周期)對同一點數據重復採集。釆集的數據大多是瞬時值,也可是某段時間內的一個特徵值。准確的數據測量是數據採集的基礎。數據量測方法有接觸式和非接觸式,檢測元件多種多樣,不論哪種方法和元件,均以不影響被測對象狀態…
6. 數據採集的方法有幾種
有以下三種:
1、調查法。
調查方法一般分為普查和抽樣調查兩大類。
2、觀察法。
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
3、文獻檢索。
文獻檢索就是從浩繁的文獻中檢索出所需的信息的過程。文獻檢索分為手工檢索和計算機檢索。
按性質分為:
①定位的,如各種坐標數據。
②定性的,如表示事物屬性的數據(居民地、河流、道路等)。
③定量的,反映事物數量特徵的數據,如長度、面積、體積等幾何量或重量、速度等物理量。
④定時的,反映事物時間特性的數據,如年、月、日、時、分、秒等。
7. 數據分析中數據收集的方法有哪些
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
8. 採集數據的方法有哪些
訪問調查:調查者與被調查者通過面對面地交談從而得到所需資料的調查方法。
郵寄調查:通過郵寄或宣傳媒體等方式將調查表或調查問卷送至被調查者手中,由被調查者填寫,然後將調查表寄回或投放到指定收集點的一種調查方法。
電話調查:電話調查是調查人員利用電話同受訪者進行語言交流,從而獲得信息的一種調查方式。
電腦輔助調查:該調查使電話調查更加便利和快捷,也使調查的質量大大提高。
座談會:將一組被調查者集中在調查現場,讓他們對調查的主題發表意見,從而獲取調查資料的方法。
個別深度訪問:一種一次只有一名受訪者參加的特殊的定性研究。
觀察法:指就調查對象的行動和意識,調查人員邊觀察邊記錄收集信息的方法。
實驗法:在所設定的特殊實驗場所、特殊狀態下,對調查對象進行實驗以取得所需資料的一種調查方法。
其中前六種方法屬於詢問調查,後兩種方法屬於觀察與實驗的方法。