導航:首頁 > 知識科普 > 高中數學有哪些證明方法

高中數學有哪些證明方法

發布時間:2022-10-03 11:56:10

A. 高中數學證明題思考方法

高中數學證明題思考方法:
1. 幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。 2. 掌握分析、證明幾何問題的常用方法
(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
3. 掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。

B. 高中數學三點共線證明方法

共線向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示為a∥b,任意一組平行向量都可移到同一直線上佰,所以稱為共線向量。

共線向量基本定理為如果 a≠0,那麼向量b與a共線的充要條件是:存在唯一實數λ,使得 b=λa。

證明過度程如下:

設A、B、C三點共線,O是平面內任一點。

因為A、B、C共線,所以存在非零實數k,使AB=kAC。

即 OB-OA=k(OC-OA)。

所以 OB=kOC+(1-k)OA。

[註:兩個系數和 k+1-k=1]。

反之,若存在實數x,y 滿足 x+y=1,且OA=xOB+yOC。

則 OA=xOB+(1-x)OC。

OA-OC=x(OB-OC)。

所以 CA=xCB。

因此,向量CA與CB共線。

又由於 CA、CB有公共點C。

所以,A、B、C三點共線。


三點共線的證明方法:

方法一:取兩點確立一條直線,計算該直線的解析式.代入第三點坐標 看是否滿足該解析式 (直線與方程)。

方法二:設三點為A、B、C .利用向量證明:λAB=AC(其中λ為非零實數)。

方法三:利用點差法求出AB斜率和AC斜率,相等即三點共線。

方法四:用梅涅勞斯定理。

方法五:利用幾何中的公理「如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線」,可知:如果三點同屬於兩個相交的平面則三點共線。

方法六:運用公(定)理 「過直線外一點有且只有一條直線與已知直線平行(垂直)」.其實就是同一法。

方法七:證明其夾角為180°。

方法八:設A B C ,證明△ABC面積為0。

C. 數學證明題的八種方法是什麼

數學證明題的八種方法:

1、分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等。

結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。

2、逆推法從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。

3、換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數。有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。

D. 高中數學不等式證明的八種方法

不等式證明知識概要

河北/趙春祥

不等式的證明問題,由於題型多變、方法多樣、技巧性強,加上無固定的規律可循,往往不是用一種方法就能解決的,它是多種方法的靈活運用,也是各種思想方法的集中體現,因此難度較大。解決這個問題的途徑在於熟練掌握不等式的性質和一些基本不等式,靈活運用常用的證明方法。

一、要點精析

1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。

(1)差值比較法的理論依據是不等式的基本性質:「a-b≥0a≥b;a-b≤0a≤b」。其一般步驟為:①作差:考察不等式左右兩邊構成的差式,將其看作一個整體;②變形:把不等式兩邊的差進行變形,或變形為一個常數,或變形為若干個因式的積,或變形為一個或幾個平方的和等等,其中變形是求差法的關鍵,配方和因式分解是經常使用的變形手段;③判斷:根據已知條件與上述變形結果,判斷不等式兩邊差的正負號,最後肯定所求證不等式成立的結論。應用范圍:當被證的不等式兩端是多項式、分式或對數式時一般使用差值比較法。

(2)商值比較法的理論依據是:「若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b」。其一般步驟為:①作商:將左右兩端作商;②變形:化簡商式到最簡形式;③判斷商與1的大小關系,就是判定商大於1或小於1。應用范圍:當被證的不等式兩端含有冪、指數式時,一般使用商值比較法。

2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。其邏輯關系為:AB1 B2 B3… BnB,即從已知A逐步推演不等式成立的必要條件從而得出結論B。

3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。用分析法證明AB的邏輯關系為:BB1B1 B3 … BnA,書寫的模式是:為了證明命題B成立,只需證明命題B1為真,從而有…,這只需證明B2為真,從而又有…,……這只需證明A為真,而已知A為真,故B必為真。這種證題模式告訴我們,分析法證題是步步尋求上一步成立的充分條件。

4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。

5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。

6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。

二、難點突破

1.在用商值比較法證明不等式時,要注意分母的正、負號,以確定不等號的方向。

2.分析法與綜合法是對立統一的兩個方面,前者執果索因,利於思考,因為它方向明確,思路自然,易於掌握;後者是由因導果,宜於表述,因為它條理清晰,形式簡潔,適合人們的思維習慣。但是,用分析法探求證明不等式,只是一種重要的探求方式,而不是一種好的書寫形式,因為它敘述較繁,如果把「只需證明」等字眼不寫,就成了錯誤。而用綜合法書寫的形式,它掩蓋了分析、探索的過程。因而證明不等式時,分析法、綜合法常常是不能分離的。如果使用綜合法證明不等式,難以入手時常用分析法探索證題的途徑,之後用綜合法形式寫出它的證明過程,以適應人們習慣的思維規律。還有的不等式證明難度較大,需一邊分析,一邊綜合,實現兩頭往中間靠以達到證題的目的。這充分表明分析與綜合之間互為前提、互相滲透、互相轉化的辯證統一關系。分析的終點是綜合的起點,綜合的終點又成為進一步分析的起點。

3.分析法證明過程中的每一步不一定「步步可逆」,也沒有必要要求「步步可逆」,因為這時僅需尋找充分條件,而不是充要條件。如果非要「步步可逆」,則限制了分析法解決問題的范圍,使得分析法只能使用於證明等價命題了。用分析法證明問題時,一定要恰當地用好「要證」、「只需證」、「即證」、「也即證」等詞語。

4.反證法證明不等式時,必須要將命題結論的反面的各種情形一一加以導出矛盾。

5.在三角換元中,由於已知條件的限製作用,可能對引入的角有一定的限制,應引起高度重視,否則可能會出現錯誤的結果。這是換元法的重點,也是難點,且要注意整體思想的應用。

6.運用放縮法證明不等式時要把握好「放縮」的尺度,即要恰當、適度,否則將達不到預期的目的,或得出錯誤的結論。另外,是分組分別放縮還是單個對應放縮,是部分放縮還是整體放縮,都要根據不等式的結構特點掌握清楚。

(摘自:《考試報·高二數學版》2004年/07月/20日)

1、比較法(作差法)
在比較兩個實數 和 的大小時,可藉助 的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有:配方、通分、因式分解、和差化積、應用已知定理、公式等。
例1、已知: , ,求證: 。
證明: ,故得 。
2、分析法(逆推法)
從要證明的結論出發,一步一步地推導,最後達到命題的已知條件(可明顯成立的不等式、已知不等式等),其每一步的推導過程都必須可逆。
例2、求證: 。
證明:要證 ,即證 ,即 , , , , ,由此逆推即得 。
3、綜合法
證題時,從已知條件入手,經過逐步的邏輯推導,運用已知的定義、定理、公式等,最終達到要證結論,這是一種常用的方法。
例3、已知: , 同號,求證: 。
證明:因為 , 同號,所以 , ,則 ,即 。
4、作商法(作比法)
在證題時,一般在 , 均為正數時,藉助 或 來判斷其大小,步驟一般為:作商——變形——判斷(大於1或小於1)。
例4、設 ,求證: 。
證明:因為 ,所以 , 。而 ,故 。
5、反證法
先假設要證明的結論不對,由此經過合理的邏輯推導得出矛盾,從而否定假設,導出結論的正確性,達到證題的目的。
例5、已知 , 是大於1的整數,求證: 。
證明:假設 ,則 ,即 ,故 ,這與已知矛盾,所以 。
6、迭合法(降元法)
把所要證明的結論先分解為幾個較簡單部分,分別證明其各部分成立,再利用同向不等式相加或相乘的性質,使原不等式獲證。
例6、已知: , ,求證: 。
證明:因為 , ,
所以 , 。
由柯西不等式
,所以原不等式獲證。
7、放縮法(增減法、加強不等式法)
在證題過程中,根據不等式的傳遞性,常採用捨去一些正項(或負項)而使不等式的各項之和變小(或變大),或把和(或積)里的各項換以較大(或較小)的數,或在分式中擴大(或縮小)分式中的分子(或分母),從而達到證明的目的。值得注意的是「放」、「縮」得當,不要過頭。常用方法為:改變分子(分母)放縮法、拆補放縮法、編組放縮法、尋找「中介量」放縮法。
例7、求證: 。
證明:令 ,則

所以 。
8、數學歸納法
對於含有 的不等式,當 取第一個值時不等式成立,如果使不等式在 時成立的假設下,還能證明不等式在 時也成立,那麼肯定這個不等式對 取第一個值以後的自然數都能成立。
例8、已知: , , ,求證: 。
證明:(1)當 時, ,不等式成立;
(2)若 時, 成立,則

= ,
即 成立。
根據(1)、(2), 對於大於1的自然數 都成立。
9、換元法
在證題過程中,以變數代換的方法,選擇適當的輔助未知數,使問題的證明達到簡化。
例9、已知: ,求證: 。
證明:設 , ,則 ,

(因為 , ),
所以 。
10、三角代換法
藉助三角變換,在證題中可使某些問題變易。
例10、已知: , ,求證: 。
證明:設 ,則 ;設 ,則
所以 。
11、判別式法
通過構造一元二次方程,利用關於某一變元的二次三項式有實根時判別式的取值范圍,來證明所要證明的不等式。
例11、設 ,且 ,求證: 。
證明:設 ,則
代入 中得 ,即
因為 , ,所以 ,即 ,
解得 ,故 。
12、標准化法
形如 的函數,其中 ,且
為常數,則當 的值之間越接近時, 的值越大(或不變);當 時, 取最大值,即

標准化定理:當A+B為常數時,有 。
證明:記A+B=C,則

求導得 ,由 得C=2A,即A=B
又由 知 的極大值點必在A=B時取得
由於當A=B時, ,故得不等式。
同理,可推廣到關於 個變元的情形。
例12、設A,B,C為三角形的三內角,求證: 。
證明:由標准化定理得,當A=B=C時, ,取最大值 ,故 。
13、等式法
應用一些等式的結論,可以巧妙地給出一些難以證明的不等式的證明。
例13(1956年波蘭數學競賽題)、 為 的三邊長,求證:

證明:由海倫公式 ,
其中 。
兩邊平方,移項整理得

而 ,所以 。
14、函數極值法
通過變換,把某些問題歸納為求函數的極值,達到證明不等式的目的。
例14、設 ,求證: 。
證明:
當 時, 取最大值 ;
當 時, 取最小值-4。
故 。
15、單調函數法
當 屬於某區間,有 ,則 單調上升;若 ,則 單調下降。推廣之,若證 ,只須證 及 即可, 。
例15、 ,求證: 。
證明:當 時, ,而

故得 。
16、中值定理法
利用中值定理: 是在區間 上有定義的連續函數,且可導,則存在 , ,滿足 來證明某些不等式,達到簡便的目的。
例16、求證: 。
證明:設 ,則
故 。
17、分解法
按照一定的法則,把一個數或式分解為幾個數或式,使復雜問題轉化為簡單易解的基本問題,以便分而治之,各個擊破,從而達到證明不等式的目的。
例17、 ,且 ,求證: 。
證明:因為

所以 。
18、構造法
在證明不等式時,有時通過構造某種模型、函數、恆等式、復數等,可以達到簡捷、明快、以巧取勝的目的。
例18、已知: , ,求證: 。
證明:依題設,構造復數 , ,則 ,
所以

故 。
19、排序法
利用排序不等式來證明某些不等式。
排序不等式:設 , ,則有
,其中 是 的一個排列。當且僅當 或 時取等號。
簡記作:反序和 亂序和 同序和。
例19、求證: 。
證明:因為 有序,所以根據排序不等式同序和最大,即 。
20、幾何法
藉助幾何圖形,運用幾何或三角知識可使某些證明變易。
例20、已知: ,且 ,求證: 。
證明:以 為斜邊, 為直角邊作
延長AB至D,使 ,延長AC至E,使 ,過C作AD的平行線交DE於F,則 ∽ ,令 ,
所以
又 ,即 ,所以 。

另外,還可以利用重要的不等式來證題,如平均不等式、柯西(Cauchy)不等式、琴生(Jensen)不等式、絕對值不等式、貝努利(J.Bernoulli)不等式、赫爾德(O.HÖlder)不等式、三角形不等式、閔可夫斯基(H.Minkowski)不等式等,這里不再煩述了。
在實際證明中,以上方法往往相互結合、互相包含,證題時,可能同時運用幾種方法,結合起來加以證明。

參考文獻
[1]李玉琪主編•初等代數研究•北京:中國礦業大學出版社,1993
[2]方初寶等編•數學猜想法淺談•重慶:科技文獻出版社重慶分社,1988
[3]吳德風•不等式與線性規劃初步•北京:科學普及出版社,1983

E. 高中數學不等式證明(放縮法)

放縮法是不等式的證明裡的一種方法,其他還有比較法,綜合法,分析法,反證法,代換法等。
所謂放縮法,要證明不等式a>b成立,有時可以將它的一邊放大或縮小,尋找一個中間量,如將a放大成c,即a<c,後證c<b,這種證法便稱為放縮法,常用的放縮技巧有:(1)舍掉(或加進)一些項;(2)在分式中放大或縮小分子或分母;(3)應用基本不等式進行放縮
放縮法的理論依據主要有:1.不等式的傳遞性;2.等量加不等量為不等量;3.同分子(母)異分母(子)的兩個分式大小的比較。
放縮法是貫穿證明不等式始終的指導變形方向的一種思考方法
注意:1.放縮的方向要一致。
2.放與縮要適度
還有我想說的是,用放縮法證明極其簡單,然而,用放縮法證不等式,技巧性極強,稍有不慎,則會出現放縮失當的現象。所以對放縮法,只需要了解,不宜深入。

F. 高等數學各種證明方法

方法1,直接用定義證明:
對於任給的ε>0,要找N,使得當n>N時,有|(n+2)cosn/(n^2-2)|<ε,
而|(n+2)cosn/(n^2-2)-0|≤|(n+2)/(n^2-2)|≤(當n>1時)|≤|(n+n)/(n^2-n^2/2)|
=|2n/n^2/2|=|2n/n^2/2|=4/n,因此只要n>4/ε,就有|(n+2)cosn/(n^2-2)-0|≤…≤4/n<ε,
故取N=[4/ε]+1即可。方法2,用「有界量乘無窮小量還是無窮小量」間接證明:
顯然,cosn是有界量,然後參照方法1用定義證明lim(n->無窮)(n+2)/(n²-2)=0,即得證。用定義證明極限的關鍵是「適當的放縮」,放縮的方法不是唯一的。
針對本題,是「適當的放大」,方法1採用的只是某一種放大方式,還可以用其他方式放大該不等式。另需注意cosn是有界量。

G. 請問,高中數學證明方法有哪些謝謝!

.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。 5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。 6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。

H. 高中數學證明線面平行方法

線面平行,幾何術語。定義為一條直線與一個平面無公共點(不相交),稱為直線與平面平行。平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。下面給大家分享一些關於高中數學證明線面平行 方法 ,希望對大家有所幫助。

目錄 一.線面平行判斷方法 二.證明線面平行的方法 三.高中數學必考知識點 四.高中數學考試高效復習 一.線面平行判斷方法

(1)利用定義:證明直線與平面無公共點;

(2)利用判定定理:從直線與直線平行得到直線與平面平行;

(3)利用面面平行的性質:兩個平面平行,則一個平面內的直線必平行於另一個平面。

註:線面平行通常採用構造平行四邊形來求證。

>>>

二.證明線面平行的方法

一,面外一條線與面內一條線平行,或兩面有交線強調面外與面內版

二,面外一直線上不同兩點到面的權距離相等,強調面外

三,證明線面無交點

四,反證法(線與 面相 交,再推翻)

五,空間向量法,證明線一平行向量與面內一向量(x1x2-y1y2=0)

>>>

三.高中數學必考知識點

必修一:

1、集合與函數的概念 (這部分知識抽象,較難理解)

2、基本的初等函數(指數函數、對數函數)

3、函數的性質及應用 (比較抽象,較難理解)

首先,在高中必考數學知識點歸納整理,集合的初步知識與其他知識點密切聯系。

它們是學習、掌握和使用數學語言的基礎,是高中數學學習的出發點。

所以同學在集合與函數的概念一定要學扎實。

同學們應該知道,函數在高中是最重要的基本概念之一,老師運用有關的概念和函數的性質,培養學生的思維能力。

必修二:

1、立體幾何

(1)、證明:垂直(多考查面面垂直)、平行

(2)、求解:主要是夾角問題,包括線面角和面面角。

立體幾何這部分對高一同學是難點,因為需要同學立體意識較強。

在學習立體幾何證明:垂直(多考查面面垂直)、平行

在學習空間幾何體、點、直線、平面之間的位置關系時,重點要幫助學生逐步形,逐步掌握解決立體幾何的相關問題。

必修三:

1、演算法初步:高考必考內容,5分(選擇或填空)

2、統計:

3、概率:高考必考內容。

在學習演算法初步、統計等內容的時候,要注意順序漸進,不可追求一步到位,特別要注意其思想的重要性。

必修四:

1、基本初等函數(三角函數:圖像、性質、高中重難點)這個是高考中佔分最多的題目。

2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。

三角函數的學習,對高中同學將進一步了解符號與變元、集合與對應、數形結合等基本的數學思想在研究三角函數時所起的重要作用,在式子與圖形的變化中,教師應引導學生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學習,使學生在學習數學和應用數學方面達到一個新的層次。

同學在高中必考數學知識點歸納整理,一定要把平面向量最基本的知識講解一定要整理歸納好,平面向量提高學生應用數學知識解決實際問題的能力和實際操作的能力。所以同學們一定要重視起來。

必修五:

1、解三角形:(正、餘弦定理、三角恆等變換)

2、數列:高考必考

3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

數列作為一種特殊的函數,學生將通過對日常生活中大量實際問題的分析,建立等差數列和等比數列這兩種數列模型,探索並掌握它們的一些基本數量關系。

>>>

四.高中數學考試高效復習

一、全面復習夯實基礎,掌握基本概念和公式

打好基礎,首先必須重視數學基本概念、基本定理(公式、法則)的復習,在理解上下功夫,整體把握數學知識。這部分內容的復習要做到,不打開課本,能選擇適當途徑將它們一一回憶出來,它們之間的脈絡框圖,能在自己大腦中勾畫出來。如函數可以利用框圖的形式由粗到細進行回憶。

概念要抓住關鍵及注意點,公式及法則要理解它們的來源,要理解公式法則中每一個字母的含義,即它們分別表示什麼,這樣才能正確使用公式。

對於數學而言,概念和公式就是它的基礎,只有你掌握了這些理論,才能加以靈活應用。

二、突出重點,各個擊破

在復習的時候除了全面的抓基礎,另外就是要針對難點問題,各個擊破。其實從考試的要求中也可以看出來,考試對知識的考查分為了解、理解、掌握、靈活和綜合運用這幾個層次。一般通過全面復習你已經到了掌握的層面,接下來就是解決靈活和綜合運用這兩點。

針對這兩點的題目相對較難,需要同學們在復習的時候要在這上面多下功夫。通過做一些試題,例如:一些金考卷、活頁題選、一遍過專題等,來鍛煉自己的應用能力,同是也是對自己的一種檢測,檢查自己是否掌握了這些內容。對於自己易錯的知識點,如果是沒有理解的話,要及時地向老師和同學請教。

(插入金考卷特快系列封面圖)

三、除了理論知識,考試技巧也很重要!

(1)不要粗心大意犯最低級的錯誤

拿到考卷以後,先把名字及其他試卷要求信息寫上,雖然這是最基本的常識,但每年都有不少同學會犯這個低級錯誤。給自己留出塗答題卡的時間,以免自己遺忘,最好是寫完選擇題直接塗卡。

(2)合理掌握時間,學會適當放棄

如果一道考題思考了大約有二十分鍾仍然沒有思路,可以先暫時放棄這道題目,不要在一道試題上花費太多的時間,導致會做的題反而沒有時間去做,那就太可惜了。

當確實沒有思路的時候要暫時放棄,如果放棄的是一道選擇題,建議大家標記一下此題,防止因此題使答題卡順序塗錯,如果時間充足還可再做。但是,標記要慎重,以免被視為作弊,可以用鉛筆標記,交試卷之前用橡皮察去。

(3)確定做題順序

在做題順序上可以採用選擇、填空、計算、證明的順序。完成選擇填空後,做大題時,先通觀整個試題,明確哪些分數是必得的,哪些是可能得到的,哪些是根本得不到的,再採取不同的對應方式,才能鎮定自如,進退有據,最終從總體上獲勝。

(4)注意步驟的完整性

解答題的分數很高,相應的對於考生知識點的考察也更全面一些,有些考題甚至包含了三、四個考察點,因此要求考生答題時相應的知識點應該在卷面上有所體現,步驟過簡勢必會影響分數。

(5)保持良好的心態

不要把自己弄的特別的緊張,就把他當作是一次很平常的考試去對待。數學只有靜下心來才能把題答好。如果上來就緊張的不行,那自己本來會做的題,可能對於你來說也是一道難題。

>>>


高中數學證明線面平行方法相關 文章 :

★ 高中數學考點整理歸納

★ 高中數學基礎知識點歸納

★ 高一數學知識點總結

★ 湖南高二數學基本知識點

★ 高中數學必考知識點歸納

★ 高中數學立體幾何學習的方法

★ 高一立體幾何重點知識點以及學習方法

★ 高中數學立體幾何的學習方法有哪些

★ 高二數學必修二的知識點總結

★ 高考攻略:數學做題太慢,教你如何提速!

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

I. 高中數學三點共線證明方法是什麼

三點共線證明

方法一:取兩點確立一條直線,計算該直線的解析式,代入第三點坐標看是否滿足該解析式。

方法二:設三點為A、B、C,利用向量證明:a倍AB向量=AC向量。

三點共線證明方法

方法一:取兩點確立一條直線,計算該直線的解析式。代入第三點坐標看是否滿足該解析式(直線與方程)。

方法二:設三點為A、B、C。利用向量證明:λAB=AC(其中λ為非零實數)。

方法三:利用點差法求出AB斜率和AC斜率,相等即三點共線。

方法四:用梅涅勞斯定理。

方法五:利用幾何中的公理「如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線」。可知:如果三點同屬於兩個相交的平面則三點共線。

方法六:運用公(定)理「過直線外一點有且只有一條直線與已知直線平行(垂直)」。其實就是同一法。

閱讀全文

與高中數學有哪些證明方法相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:65
五菱p1171故障碼解決方法 瀏覽:860
男士修護膏使用方法 瀏覽:548
電腦圖標修改方法 瀏覽:609
濕氣怎麼用科學的方法解釋 瀏覽:539
910除以26的簡便計算方法 瀏覽:807
吹東契奇最簡單的方法 瀏覽:706
對腎臟有好處的食用方法 瀏覽:100
電腦四線程內存設置方法 瀏覽:514
數字電路通常用哪三種方法分析 瀏覽:17
實訓課程的教學方法是什麼 瀏覽:527
苯甲醇乙醚鑒別方法 瀏覽:84
蘋果手機微信視頻聲音小解決方法 瀏覽:702
控制箱的連接方法 瀏覽:77
用什麼簡單的方法可以去痘 瀏覽:791
快速去除甲醛的小方法你知道幾個 瀏覽:805
自行車架尺寸測量方法 瀏覽:126
石磨子的製作方法視頻 瀏覽:154
行善修心的正確方法 瀏覽:405
土豆燉雞湯的正確方法和步驟 瀏覽:278