導航:首頁 > 知識科普 > 回歸問題的基線方法有哪些

回歸問題的基線方法有哪些

發布時間:2022-09-14 15:01:37

1. 一元線性回歸最常見的估計方法有三種

一元線性回歸最常見的估計方法有三種:線性回歸方法,邏輯回歸方法,多項式回歸方法。

通常因變數和一個(或者多個)自變數之間擬合出來是一條直線(回歸線),通常可以用一個普遍的公式來表示:Y(因變數)=a*X(自變數)+b+c,其中b表示截距,a表示直線的斜率,c是誤差項。

回歸分析

只涉及到兩個變數的,稱一元回歸分析。一元回歸的主要任務是從兩個相關變數中的一個變數去估計另一個變數,被估計的變數,稱因變數,可設為Y;估計出的變數,稱自變數,設為X。回歸分析就是要找出一個數學模型Y=f(X),使得從X估計Y可以用一個函數式去計算。當Y=f(X)的形式是一個直線方程時,稱為一元線性回歸。

2. 回歸分析的內容和步驟是什麼

1、確定變數:

明確定義了預測的具體目標,並確定了因變數。 如果預測目標是下一年的銷售量,則銷售量Y是因變數。 通過市場調查和數據訪問,找出與預測目標相關的相關影響因素,即自變數,並選擇主要影響因素。

2、建立預測模型:

依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。

3、進行相關分析:

回歸分析是因果因素(自變數)和預測因子(因變數)的數學統計分析。 只有當自變數和因變數之間存在某種關系時,建立的回歸方程才有意義。 因此,作為自變數的因子是否與作為因變數的預測對象相關,程度的相關程度以及判斷相關程度的程度是在回歸分析中必須解決的問題。 相關分析通常需要相關性,並且相關度系數用於判斷自變數和因變數之間的相關程度。

4、計算預測誤差:

回歸預測模型是否可用於實際預測取決於回歸預測模型的測試和預測誤差的計算。 回歸方程只能通過回歸方程作為預測模型來預測,只有當它通過各種測試且預測誤差很小時才能預測。

5、確定預測值:

利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。

(2)回歸問題的基線方法有哪些擴展閱讀:

回歸分析的應用:

1、相關分析研究的是現象之間是否相關、相關的方向和密切程度,一般不區別自變數或因變數。而回歸分析則要分析現象之間相關的具體形式,確定其因果關系,並用數學模型來表現其具體關系。比如說,從相關分析中我們可以得知「質量」和「用戶滿意度」變數密切相關,但是這兩個變數之間到底是哪個變數受哪個變數的影響,影響程度如何,則需要通過回歸分析方法來確定。

2、一般來說,回歸分析是通過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並根據實測數據來求解模型的各個參數,然後評價回歸模型是否能夠很好的擬合實測數據;如果能夠很好的擬合,則可以根據自變數作進一步預測。

3. 常見的回歸分析方法有哪些

1/6分步閱讀
1.線性回歸方法:通常因變數和一個(或者多個)自變數之間擬合出來是一條直線(回歸線),通常可以用一個普遍的公式來表示:Y(因變數)=a*X(自變數)+b+c,其中b表示截距,a表示直線的斜率,c是誤差項。如下圖所示。

2/6
2.邏輯回歸方法:通常是用來計算「一個事件成功或者失敗」的概率,此時的因變數一般是屬於二元型的(1 或0,真或假,有或無等)變數。以樣本極大似然估計值來選取參數,而不採用最小化平方和誤差來選擇參數,所以通常要用log等對數函數去擬合。如下圖。

3/6
3.多項式回歸方法:通常指自變數的指數存在超過1的項,這時候最佳擬合的結果不再是一條直線而是一條曲線。比如:拋物線擬合函數Y=a+b*X^2,如下圖所示。

4/6
4.嶺回歸方法:通常用於自變數數據具有高度相關性的擬合中,這種回歸方法可以在原來的偏差基礎上再增加一個偏差度來減小總體的標准偏差。如下圖是其收縮參數的最小誤差公式。

5/6
5.套索回歸方法:通常也是用來二次修正回歸系數的大小,能夠減小參量變化程度以提高線性回歸模型的精度。如下圖是其懲罰函數,注意這里的懲罰函數用的是絕對值,而不是絕對值的平方。

6/6
6.ElasticNet回歸方法:是Lasso和Ridge回歸方法的融合體,使用L1來訓練,使用L2優先作為正則化矩陣。當相關的特徵有很多個時,ElasticNet不同於Lasso,會選擇兩個。如下圖是其常用的理論公式。

4. 數據分析師必須掌握的7種回歸分析方法

1、線性回歸


線性回歸是數據分析法中最為人熟知的建模技術之一。它一般是人們在學習預測模型時首選的技術之一。在這種數據分析法中,由於變數是連續的,因此自變數可以是連續的也可以是離散的,回歸線的性質是線性的。


線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。


2、邏輯回歸


邏輯回歸是用來計算“事件=Success”和“事件=Failure”的概率。當因變數的類型屬於二元(1 /0,真/假,是/否)變數時,我們就應該使用邏輯回歸.


邏輯回歸不要求自變數和因變數是線性關系。它可以處理各種類型的關系,因為它對預測的相對風險指數OR使用了一個非線性的log轉換。


為了避免過擬合和欠擬合,我們應該包括所有重要的變數。有一個很好的方法來確保這種情況,就是使用逐步篩選方法來估計邏輯回歸。它需要大的樣本量,因為在樣本數量較少的情況下,極大似然估計的效果比普通的最小二乘法差。


3、多項式回歸


對於一個回歸方程,如果自變數的指數大於1,那麼它就是多項式回歸方程。雖然會有一個誘導可以擬合一個高次多項式並得到較低的錯誤,但這可能會導致過擬合。你需要經常畫出關系圖來查看擬合情況,並且專注於保證擬合合理,既沒有過擬合又沒有欠擬合。下面是一個圖例,可以幫助理解:


明顯地向兩端尋找曲線點,看看這些形狀和趨勢是否有意義。更高次的多項式最後可能產生怪異的推斷結果。


4、逐步回歸


在處理多個自變數時,我們可以使用這種形式的回歸。在這種技術中,自變數的選擇是在一個自動的過程中完成的,其中包括非人為操作。


這一壯舉是通過觀察統計的值,如R-square,t-stats和AIC指標,來識別重要的變數。逐步回歸通過同時添加/刪除基於指定標準的協變數來擬合模型。


5、嶺回歸


嶺回歸分析是一種用於存在多重共線性(自變數高度相關)數據的技術。在多重共線性情況下,盡管最小二乘法(OLS)對每個變數很公平,但它們的差異很大,使得觀測值偏移並遠離真實值。嶺回歸通過給回歸估計上增加一個偏差度,來降低標准誤差。


除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮了相關系數的值,但沒有達到零,這表明它沒有特徵選擇功能,這是一個正則化方法,並且使用的是L2正則化。


6、套索回歸


它類似於嶺回歸。除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮系數接近零(等於零),確實有助於特徵選擇;這是一個正則化方法,使用的是L1正則化;如果預測的一組變數是高度相關的,Lasso 會選出其中一個變數並且將其它的收縮為零。


7、回歸


ElasticNet是Lasso和Ridge回歸技術的混合體。它使用L1來訓練並且L2優先作為正則化矩陣。當有多個相關的特徵時,ElasticNet是很有用的。Lasso會隨機挑選他們其中的一個,而ElasticNet則會選擇兩個。Lasso和Ridge之間的實際的優點是,它允許ElasticNet繼承循環狀態下Ridge的一些穩定性。


通常在高度相關變數的情況下,它會產生群體效應;選擇變數的數目沒有限制;並且可以承受雙重收縮。


關於數據分析師必須掌握的7種回歸分析方法,青藤小編就和您分享到這里了,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的職業前景及就業內容,可以點擊本站的其他文章進行學習。

5. 如何運用Logistic 回歸調整人口基線

二元logit回歸
1.打開數據,依次點擊:analyse--regression--binarylogistic,打開二分回歸對話框。
2.將因變數和自變數放入格子的列表裡,上面的是因變數,下面的是自變數(單因素拉入一個,多因素拉入多個)。
3.設置回歸方法,這里選擇最簡單的方法:enter,它指的是將所有的變數一次納入到方程。其他方法都是逐步進入的方法。
4.等級資料,連續資料不需要設置虛擬變數。多分類變數需要設置虛擬變數。
虛擬變數ABCD四類,以a為參考,那麼解釋就是b相對於a有無影響,c相對於a有無影響,d相對於a有無影響。
5.選項裡面至少選擇95%CI。
點擊ok。

6. 趨勢分析法常見的有哪幾類 回歸分析法

趨勢分析法總體上分四大類:
(一)縱向分析法;
(二)橫向分析法;
(三)標准分析法;
(四)綜合分析法。

此外,趨勢分析法還有一種趨勢預測分析。趨勢預測分析運用回歸分析法、指數平滑法等方法來對財務報表的數據進行分析預測,分析其發展趨勢,並預測出可能的發展結果。

趨勢線性方程是作趨勢分析時,預測銷售和收益所普遍採用的一種方法。公式表示為:y=a+bx.其中:a和b為常數,x表示時期系數的值,x是由分配確定,並要使∑x=0。為了使∑x=0。當時期數為偶數或奇數時,值的分配稍有不同。

回歸分析法

回歸分析法是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。

回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。

此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。

回歸分析法預測是利用回歸分析方法,根據一個或一組自變數的變動情況預測與其有相關關系的某隨機變數的未來值。進行回歸分析需要建立描述變數間相關關系的回歸方程。

根據自變數的個數,可以是一元回歸,也可以是多元回歸。根據所研究問題的性質,可以是線性回歸,也可以是非線性回歸。非線性回歸方程一般可以通過數學方法為線性回歸方程進行處理。

7. 回歸分析的基本步驟是什麼

回歸分析:

1、確定變數:明確預測的具體目標,也就確定了因變數。如預測具體目標是下一年度的銷售量,那麼銷售量Y就是因變數。通過市場調查和查閱資料,尋找與預測目標的相關影響因素,即自變數,並從中選出主要的影響因素。

2、建立預測模型:依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。

3、進行相關分析:回歸分析是對具有因果關系的影響因素(自變數)和預測對象(因變數)所進行的數理統計分析處理。只有當自變數與因變數確實存在某種關系時,建立的回歸方程才有意義。

因此,作為自變數的因素與作為因變數的預測對象是否有關,相關程度如何,以及判斷這種相關程度的把握性多大,就成為進行回歸分析必須要解決的問題。進行相關分析,一般要求出相關關系,以相關系數的大小來判斷自變數和因變數的相關的程度。

4、計算預測誤差:回歸預測模型是否可用於實際預測,取決於對回歸預測模型的檢驗和對預測誤差的計算。回歸方程只有通過各種檢驗,且預測誤差較小,才能將回歸方程作為預測模型進行預測。

5、確定預測值:利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。

Logistic Regression邏輯回歸

邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,應該使用邏輯回歸。這里,Y的值為0或1,它可以用下方程表示。

odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence

ln(odds) = ln(p/(1-p))

logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk

在這里使用的是的二項分布(因變數),需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。

以上內容參考:網路-回歸分析

閱讀全文

與回歸問題的基線方法有哪些相關的資料

熱點內容
焦油含量檢測方法 瀏覽:289
草酸用什麼方法能夠去掉 瀏覽:224
紅參原液的使用方法 瀏覽:1002
用電腦鍵盤關機操作方法 瀏覽:741
牛皮癬運動治療方法有哪些 瀏覽:503
噴霧香水使用方法 瀏覽:682
戒除美沙酮的最佳方法 瀏覽:12
大池過濾器安裝方法 瀏覽:507
測量方法技術的起源 瀏覽:361
崗位分析方法的選擇依據是 瀏覽:983
食用鑄鐵消除內應力最好的方法 瀏覽:516
測量透鏡焦距的方法哪個好 瀏覽:194
3x97簡便計算方法 瀏覽:556
益節美國氨糖食用方法 瀏覽:561
飛利浦溫奶器使用方法 瀏覽:925
FDMS顆粒物測量方法 瀏覽:777
2015新君威後備箱進水解決方法 瀏覽:931
北京標桿企業調研方法有哪些 瀏覽:115
鉛筆生活技巧和方法 瀏覽:539
煙氣控制方法有哪些 瀏覽:695