Ⅰ 初三解二次函數的方法怎麼做的
初三求二次函數的方法一般有三種,(1)一般式y=ax^2+bx+c;(2)交點式y=a(x-x1)(x-x2),x1,x2是函數與x軸的兩個交點的橫坐標;(3)頂點式y=a(x-m)^2+n,(m,n)是頂點坐標。
Ⅱ 初三數學二次函數求簡便演算法
用十字相乘,把二次項和常數項系數拆成兩數相乘的形式,列成一個正方形,左右兩側分別為二次項和常數項拆出的兩個數(反過來也行),之後若左上乘右下加右上乘左下等於一次項系數,則該式可拆成(左上X+右上)×(左下X+右下)的形式
Ⅲ 二次函數解析式解題技巧
二次函數解析式是數學學習當中非常重要的一個章節,也是數學考試的一個必考知識點。下面是我為大家整理的關於二次函數解析式解題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
二次函數解析式解題技巧
函數解析式的常用求解 方法 :
(1)待定系數法:(已知函數類型如:一次、二次函數、反比例函數等):若已知f(x)的結構時,可設出含參數的表達式,再根據已知條件,列方程或方程組,從而求出待定的參數,求得f(x)的表達式。待定系數法是一種重要的數學方法,它只適用於已知所求函數的類型求其解析式。
(2)換元法(注意新元的取值范圍):已知f(g(x))的表達式,欲求f(x),我們常設t=g(x),從而求得x=(g^(-1))(t),然後代入f(g(x))的表達式,從而得到f(t)的表達式,即為f(x)的表達式。
(3)配湊法(整體代換法):若已知f(g(x))的表達式,欲求f(x)的表達式,用換元法有困難時,(如g(x)不存在反函數)可把g(x)看成一個整體,把右邊變為由g(x)組成的式子,再換元求出f(x)的式子。
(4)消元法(如自變數互為倒數、已知f(x)為奇函數且g(x)為偶函數等):若已知以函數為元的方程形式,若能設法構造另一個方程,組成方程組,再解這個方程組,求出函數元,稱這個方法為消元法。
(5)賦值法(特殊值代入法):在求某些函數的表達式或求某些函數值時,有時把已知條件中的某些變數賦值,使問題簡單明了,從而易於求出函數的表達式。
求函數解析式是中學數學的重要內容,是高考的重要考點之一。極客數學幫給出求函數解析式的基本方法,供廣大師生參考。
一、定義法
根據函數的定義求其解析式的方法。
二、換元法
利用換元法求函數解析式必須考慮「元」的取值范圍,即f(x)的定義域。
三、方程組法
根據題意,通過建立方程組求函數解析式的方法。
方程組法求解析式的關鍵是根據已知方程中式子的特點,構造另一個方程。
四、特殊化法
通過對某變數取特殊值求函數解析式的方法。
五、待定系數法
已知函數解析式的類型,可設其解析式的形式,根據已知條件建立關於待定系數的方程,從而求出函數解析式的方法。
六、函數性質法
利用函數的性質如奇偶性、單調性、周期性等求函數解析式的方法。
七、反函數法
利用反函數的定義求反函數的解析式的方法。
八、「即時定義」法
給出一個「即時定義」函數,根據這個定義求函數解析式的方法。
九、建模法
根據實際問題建立函數模型的方法。
十、圖像法
利用函數的圖像求其解析式的方法。
十一、軌跡法
設出函數圖像上任一點P(x,y),根據題意建立關於x,y的方程,從而求出函數解析式的方法。
練習題
1、已知二次函數的圖象的頂點為(-2,3),且過點(-1,5),求此二次函數的解析式
2、已知二次函數的圖象與x軸交於點(-2,0),(4,0),且最值為-4.5,求此二次函數的解析式。 3、已知二次函數f(x)與x軸的兩交點為(-2,0),(3,0),且f(0)=-3,求f(x)
4、已知f(x)是一次函數,且滿足3f(x+1)-2f(x-1)=2x+17求f(x)
5、已知二次函數f(x)滿足:f(x+1)+f(x-1)=2x^2-4x,求f(x)
6、已知f(x)是一次函數,且f[f(x)]=9x+8,求f(x)
7、已知f(x)=x^2-1,求f(x+x^2)
8、已知函數f(x)滿足:f(x)-2f(-x)=3x+2,求f(x)
相關 文章 :
1. 初二數學壓軸題答題技巧
2. 初中數學二次函數知識點總結
3. 做數學題不知道怎麼下手沒有思路
4. 高中數學的21中解題方法技巧
5. 怎樣提高初三數學壓軸題
Ⅳ 初三二次函數主要知識點
初三數學 二次函數 知識點總結
一、二次函數概念:
1.二次函數的概念:一般地,形如(是常數,)的函數,叫做二次函數。 這里需要強調:和一元二次方程類似,二次項系數,而可以為零.二次函數的定義域是全體實數.
2. 二次函數的結構特徵:
⑴ 等號左邊是函數,右邊是關於自變數的二次式,的最高次數是2.
⑵ 是常數,是二次項系數,是一次項系數,是常數項.
二、二次函數的基本形式
1. 二次函數基本形式:的性質:
a 的絕對值越大,拋物線的開口越小。
的符號 開口方向 頂點坐標 對稱軸 性質
向上 軸 時,隨的增大而增大;時,隨的增大而減小;時,有最小值.
向下 軸 時,隨的增大而減小;時,隨的增大而增大;時,有最大值.
2. 的性質:
上加下減。
的符號 開口方向 頂點坐標 對稱軸 性質
向上 軸 時,隨的增大而增大;時,隨的增大而減小;時,有最小值.
向下 軸 時,隨的增大而減小;時,隨的增大而增大;時,有最大值.
3. 的性質:
左加右減。
的符號 開口方向 頂點坐標 對稱軸 性質
向上 X=h 時,隨的增大而增大;時,隨的增大而減小;時,有最小值.
向下 X=h 時,隨的增大而減小;時,隨的增大而增大;時,有最大值.
4. 的性質:
的符號 開口方向 頂點坐標 對稱軸 性質
向上 X=h 時,隨的增大而增大;時,隨的增大而減小;時,有最小值.
向下 X=h 時,隨的增大而減小;時,隨的增大而增大;時,有最大值.
三、二次函數圖象的平移
1. 平移步驟:
方法一:⑴ 將拋物線解析式轉化成頂點式,確定其頂點坐標;
⑵ 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下:
2. 平移規律
在原有函數的基礎上「值正右移,負左移;值正上移,負下移」.
概括成八個字「左加右減,上加下減」.
方法二:
⑴沿軸平移:向上(下)平移個單位,變成
(或)
⑵沿軸平移:向左(右)平移個單位,變成(或)
四、二次函數與的比較
從解析式上看,與是兩種不同的表達形式,後者通過配方可以得到前者,即,其中.
五、二次函數圖象的畫法
五點繪圖法:利用配方法將二次函數化為頂點式,確定其開口方向、對稱軸及頂點坐標,然後在對稱軸兩側,左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關於對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關於對稱軸對稱的點).
畫草圖時應抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.
六、二次函數的性質
1. 當時,拋物線開口向上,對稱軸為,頂點坐標為.
當時,隨的增大而減小;當時,隨的增大而增大;當時,有最小值.
2. 當時,拋物線開口向下,對稱軸為,頂點坐標為.當時,隨的增大而增大;當時,隨的增大而減小;當時,有最大值.
七、二次函數解析式的表示方法
1. 一般式:(,,為常數,);
2. 頂點式:(,,為常數,);
3. 兩根式:(,,是拋物線與軸兩交點的橫坐標).
注意:任何二次函數的解析式都可以化成一般式或頂點式,但並非所有的二次函數都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示.二次函數解析式的這三種形式可以互化.
八、二次函數的圖象與各項系數之間的關系
1. 二次項系數
二次函數中,作為二次項系數,顯然.
⑴ 當時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大;
⑵ 當時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大.
總結起來,決定了拋物線開口的大小和方向,的正負決定開口方向,的大小決定開口的大小.
2. 一次項系數
在二次項系數確定的前提下,決定了拋物線的對稱軸.
⑴ 在的前提下,
當時,,即拋物線的對稱軸在軸左側;
當時,,即拋物線的對稱軸就是軸;
當時,,即拋物線對稱軸在軸的右側.
⑵ 在的前提下,結論剛好與上述相反,即
當時,,即拋物線的對稱軸在軸右側;
當時,,即拋物線的對稱軸就是軸;
當時,,即拋物線對稱軸在軸的左側.
總結起來,在確定的前提下,決定了拋物線對稱軸的位置.
的符號的判定:對稱軸在軸左邊則,在軸的右側則,概括的說就是「左同右異」
總結:
3. 常數項
⑴ 當時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標為正;
⑵ 當時,拋物線與軸的交點為坐標原點,即拋物線與軸交點的縱坐標為;
⑶ 當時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標為負.
總結起來,決定了拋物線與軸交點的位置.
總之,只要都確定,那麼這條拋物線就是唯一確定的.
二次函數解析式的確定:
根據已知條件確定二次函數解析式,通常利用待定系數法.用待定系數法求二次函數的解析式必須根據題目的特點,選擇適當的形式,才能使解題簡便.一般來說,有如下幾種情況:
1. 已知拋物線上三點的坐標,一般選用一般式;
2. 已知拋物線頂點或對稱軸或最大(小)值,一般選用頂點式;
3. 已知拋物線與軸的兩個交點的橫坐標,一般選用兩根式;
4. 已知拋物線上縱坐標相同的兩點,常選用頂點式.
九、二次函數圖象的對稱
二次函數圖象的對稱一般有五種情況,可以用一般式或頂點式表達
1. 關於軸對稱
關於軸對稱後,得到的解析式是;
關於軸對稱後,得到的解析式是;
2. 關於軸對稱
關於軸對稱後,得到的解析式是;
關於軸對稱後,得到的解析式是;
3. 關於原點對稱
關於原點對稱後,得到的解析式是;
關於原點對稱後,得到的解析式是;
4. 關於頂點對稱(即:拋物線繞頂點旋轉180°)
關於頂點對稱後,得到的解析式是;
關於頂點對稱後,得到的解析式是.
5. 關於點對稱
關於點對稱後,得到的解析式是
根據對稱的性質,顯然無論作何種對稱變換,拋物線的形狀一定不會發生變化,因此永遠不變.求拋物線的對稱拋物線的表達式時,可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標及開口方向,再確定其對稱拋物線的頂點坐標及開口方向,然後再寫出其對稱拋物線的表達式.
十、二次函數與一元二次方程:
1. 二次函數與一元二次方程的關系(二次函數與軸交點情況):
一元二次方程是二次函數當函數值時的特殊情況.
圖象與軸的交點個數:
① 當時,圖象與軸交於兩點,其中的是一元二次方程的兩根.這兩點間的距離.
② 當時,圖象與軸只有一個交點;
③ 當時,圖象與軸沒有交點.
當時,圖象落在軸的上方,無論為任何實數,都有;
當時,圖象落在軸的下方,無論為任何實數,都有.
2. 拋物線的圖象與軸一定相交,交點坐標為,;
3. 二次函數常用解題方法總結:
⑴ 求二次函數的圖象與軸的交點坐標,需轉化為一元二次方程;
⑵ 求二次函數的最大(小)值需要利用配方法將二次函數由一般式轉化為頂點式;
⑶ 根據圖象的位置判斷二次函數中,,的符號,或由二次函數中,,的符號判斷圖象的位置,要數形結合;
⑷ 二次函數的圖象關於對稱軸對稱,可利用這一性質,求和已知一點對稱的點坐標,或已知與軸的一個交點坐標,可由對稱性求出另一個交點坐標.
⑸ 與二次函數有關的還有二次三項式,二次三項式本身就是所含字母的二次函數;下面以時為例,揭示二次函數、二次三項式和一元二次方程之間的內在聯系:
拋物線與軸有兩個交點 二次三項式的值可正、可零、可負 一元二次方程有兩個不相等實根
拋物線與軸只有一個交點 二次三項式的值為非負 一元二次方程有兩個相等的實數根
拋物線與軸無交點 二次三項式的值恆為正 一元二次方程無實數根.
十一、函數的應用
二次函數應用
Ⅳ 求初三數學二次函數所有公式。
一般式:y=ax^2;+bx+c(a≠0,a、b、c為常數),則稱y為x的二次函數。
頂點式:y=a(x-h)�0�5+k或y=a(x+m)�0�5+k (兩個式子實質一樣,但初中課本上都是第一個式子)
交點式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)
二次函數表達式的右邊通常為二次。
x是自變數,y是x的二次函數
x1,x2=[-b±根號下(b^2-4ac)]/2a(即一元二次方程求根公式)
[編輯本段]二次函數的圖像
在平面直角坐標系中作出二次函數y=x的平方;的圖像,
可以看出,二次函數的圖像是一條永無止境的拋物線。不同的二次函數圖像
[編輯本段]拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為P ( -b/2a ,(4ac-b�0�5)/4a )
當-b/2a=0時,P在y軸上;當Δ= b�0�5-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左; 因為若對稱軸在左邊則對稱軸小於0,也就是-b/2a<0,所以b/2a要大於0,所以a、b要同號
當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大於0,也就是-b/2a>0,所以b/2a要小於0,所以a、b要異號
可簡單記憶為左同右異即當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。
事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數解析式(一次函數)的斜率k的值。可通過對二次函數求導得到。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與x軸交點個數
Δ= b�0�5-4ac>0時,拋物線與x軸有2個交點。
Δ= b�0�5-4ac=0時,拋物線與x軸有1個交點。
_______
Δ= b�0�5-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b�0�5-4ac 的值的相反數,乘上虛數i,整個式子除以2a)
當a>0時,函數在x= -b/2a處取得最小值f(-b/2a)=4ac-b�0�5/4a;在{x|x<-b/2a}上是減函數,在{x|x>-b/2a}上是增函數;拋物線的開口向上;函數的值域是{y|y≥4ac-b^2;/4a}相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=ax�0�5+c(a≠0)
7.定義域:R
值域:(對應解析式,且只討論a大於0的情況,a小於0的情況請讀者自行推斷)①[(4ac-b�0�5)/4a,正無窮);②[t,正無窮)
奇偶性:偶函數
周期性:無
解析式:
①y=ax�0�5+bx+c[一般式]
⑴a≠0
⑵a>0,則拋物線開口朝上;a<0,則拋物線開口朝下;
⑶極值點:(-b/2a,(4ac-b�0�5)/4a);
⑷Δ=b�0�5-4ac,
Δ>0,圖象與x軸交於兩點:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,圖象與x軸交於一點:
(-b/2a,0);
Δ<0,圖象與x軸無交點;
②y=a(x-h)�0�5+t[配方式]
此時,對應極值點為(h,t),其中h=-b/2a,t=(4ac-b�0�5)/4a);
③y=a(x-x1)(x-x2)[交點式]
a≠0,此時,x1、x2即為函數與X軸的兩個交點,將X、Y代入即可求出解析式(一般與一元二次方程連用)。
[編輯本段]二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關於x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
y=ax^2;
y=ax^2;+K
y=a(x-h)^2;
y=a(x-h)^2+k
y=ax^2+bx+c
頂點坐標
(0,0)
(0,K)
(h,0)
(h,k)
(-b/2a,sqrt[4ac-b^2;]/4a)
對 稱 軸
x=0
x=0
x=h
x=h
x=-b/2a
當h>0時,y=a(x-h)^2;的圖象可由拋物線y=ax^2;向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2;向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2;向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2-k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x+h)�0�5+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)�0�5+k的圖象;
因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2;+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2;]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x�6�9,0)和B(x�6�0,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x�6�0-x�6�9| 另外,拋物線上任何一對對稱點的距離可以由|2×(-b/2a)-A |(A為其中一點的橫坐標)
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸或極大(小)值時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x�6�9)(x-x�6�0)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
Ⅵ 初三的二次函數的解決有什麼技巧
二次函數有三種形式
一般式:y=ax^2+bx+c
特點:簡潔,可以直接判斷y軸的交點(0,c); 由系數a、b、c可以判斷二次函數的大致形狀。適合劃草圖粗略分析。同時有對稱軸公式,頂點公式以及韋達定理。這里公式略過了。
頂點式:y=a(x-m)^2+n
特點,原一般式中的2次項和一次項合並。合得(x-m)^2整體獨立分析,對稱軸與頂點一目瞭然,由a判斷開口的方向,確定出對整體函數的最值。充分體現了函數的對稱性。同時可以為用來分析二次函數在任意區間內的值域(y的取值范圍)提供了一個分析的形式。能夠很好的判斷函數的單調性(增減性)。。同時是判斷方程是否有解的證明形式,以及求根公式和判別式的來源。
雙根式:y=a(x-x1)(x-x2)
特點:這是因式分解的過程,二次多項式的一次分解。x軸的交點一目瞭然。。根與系數關系的分析,韋達定理的證明。與實際問題相符(雙根之間的距離問題)。。同時這是很多後來數學領域中的一些定理證明中非常巧妙的證明中提供了一個抽象特徵思路。。。比如:基本不等式特徵形式,不等式的放縮,極限中單調有界遞推證明的技巧,二階數列遞推求通項,矩陣行列式的運算等等 。。。。。。
一般式轉化為頂點式的方法是配方法,方法略過。
一般式轉化為雙根式的方法是十字相乘法,方法略過。
希望能對你有用,若有其它問題可以私信我。
Ⅶ 初三學二次函數的竅門
很多同學並不是很理解函數方面的數學問題,我整理了一些二次函數的解題技巧,大家一起來看看吧。
1、二次函數的定義和知識點:形如y=ax^2+bx+c(a≠0,其中a、b、c是常數)的函數為二次函數。
(1)、a決定拋物線的開口方向和形狀大小,當a>0時,開口向上,當a<0時開口向下;︱a︱的值越大,開口就越小;當b=0時,拋物線的軸對稱是Y軸;當c=0時,拋物線經過原點;當b和c同時為0時,其頂點就是原點。
(2)、拋物線y=ax2+bx+c(a≠0)與Y軸的交點坐標為(0,c);求與X軸的兩個交點坐標的方法是令y=0,然後解關於ax2+bx+c=0的方程,得出的x的解就是與x軸的交點的橫坐標。
2、會求與二次函數y=ax^2+bx+c(a≠0)關於X軸、關於Y軸或者關於頂點對稱的新二次函數的解析式。
(1)與二次函數y=ax^2+bx+c(a≠0)關於X軸對稱的新解析式為y=-ax^2-bx-c即a、c、b都變成相反數。
(2)關於Y軸對稱的新解析式為y=ax^2-bx+c,即a和c不變,b變成相反數。 即a和c不變,b變成相反數。
二次函數拋物線,圖象對稱是關鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;
頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;
頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。
若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
Ⅷ 二次函數有沒簡單的配方法。最容易記的口訣之類的
二次函數簡單的配方法:
1、把二次項系數提出來。
2、在括弧內,加上一次項系數一半的平方,同時減去,以保證值不變。
3、這時就能找到完全平方了。然後再把二次項系數乘進來即可。
例題示例如下:
y=3X²-4X+1【原式】
=3(X²-4/3X)+1【提二次項系數】
=3(X²-4/3X+4/9-4/9)+1【加一次項系數平方】
=3(X-2/3)²-4/3+1【乘進二次項系數】
=3(X-2/3)²-1/3【整理】
最簡單的口訣就是記公式,公式整理如下圖:
(8)初三數學二次函數定值簡便方法擴展閱讀:
二次函數(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次, 二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。
配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。
Ⅸ 二次函數的解題技巧
我也是初三的.XIXI!~~~
一、理解二次函數的內涵及本質 .
二次函數 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常數)中含有兩個變數 x 、 y ,我們只要先確定其中一個變數,就可利用解析式求出另一個變數,即得到一組解;而一組解就是一個點的坐標,實際上二次函數的圖象就是由無數個這樣的點構成的圖形 .
二、熟悉幾個特殊型二次函數的圖象及性質 .
1 、通過描點,觀察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 圖象的形狀及位置,熟悉各自圖象的基本特徵,反之根據拋物線的特徵能迅速確定它是哪一種解析式 .
2 、理解圖象的平移口訣「加上減下,加左減右」 .
y=ax2 → y=a ( x + h ) 2 + k 「加上減下」是針對 k 而言的,「加左減右」是針對 h 而言的 .
總之,如果兩個二次函數的二次項系數相同,則它們的拋物線形狀相同,由於頂點坐標不同,所以位置不同,而拋物線的平移實質上是頂點的平移,如果拋物線是一般形式,應先化為頂點式再平移 .
3 、通過描點畫圖、圖象平移,理解並明確解析式的特徵與圖象的特徵是完全相對應的,我們在解題時要做到胸中有圖,看到函數就能在頭腦中反映出它的圖象的基本特徵;
4 、在熟悉函數圖象的基礎上,通過觀察、分析拋物線的特徵,來理解二次函數的增減性、極值等性質;利用圖象來判別二次函數的系數 a 、 b 、 c 、△以及由系數組成的代數式的符號等問題 .
三、要充分利用拋物線「頂點」的作用 .
1 、要能准確靈活地求出「頂點」 . 形如 y=a ( x + h ) 2 + K →頂點(- h,k ),對於其它形式的二次函數,我們可化為頂點式而求出頂點 .
2 、理解頂點、對稱軸、函數最值三者的關系 . 若頂點為(- h , k ),則對稱軸為 x= - h , y 最大(小) =k ;反之,若對稱軸為 x=m , y 最值 =n ,則頂點為( m , n );理解它們之間的關系,在分析、解決問題時,可達到舉一反三的效果 .
3 、利用頂點畫草圖 . 在大多數情況下,我們只需要畫出草圖能幫助我們分析、解決問題就行了,這時可根據拋物線頂點,結合開口方向,畫出拋物線的大致圖象 .
四、理解掌握拋物線與坐標軸交點的求法 .
一般地,點的坐標由橫坐標和縱坐標組成,我們在求拋物線與坐標軸的交點時,可優先確定其中一個坐標,再利用解析式求出另一個坐標 . 如果方程無實數根,則說明拋物線與 x 軸無交點 .
從以上求交點的過程可以看出,求交點的實質就是解方程,而且與方程的根的判別式聯系起來,利用根的判別式判定拋物線與 x 軸的交點個數 .
五、靈活應用待定系數法求二次函數的解析式 .
用待定系數法求二次函數的解析式是我們求解析式時最常規有效的方法,求解析式時往往可選擇多種方法,如能綜合利用二次函數的圖象與性質,靈活應用數形結合的思想,不僅可以簡化計算,而且對進一步理解二次函數的本質及數與形的關系大有裨益 .
二次函數y=ax2
學習要求:
1.知道二次函數的意義.
2.會用描點法畫出函數y=ax2的圖象,知道拋物線的有關概念.
重點難點解析
1.本節重點是二次函數的概念和二次函數y=ax2的圖象與性質;難點是根據圖象概括二次函數y=ax2的性質.
2.形如=ax2+bx+c(其中a、b、c是常數,a≠0)的函數都是二次函數.解析式中只能含有兩
個變數x、y,且x的二次項的系數不能為0,自變數x的取值范圍通常是全體實數,但在實際問題中應使實際量有意義。如圓面積S與圓半徑R的關系式S=πR2中,半徑R只能取非負數。
3.拋物線y=ax2的形狀是由a決定的。a的符號決定拋物線的開口方向,當a>0時,開口向上,拋物線在y軸的上方(頂點在x軸上),並向上無限延伸;當a<0時,開口向下,拋物線在x軸下方(頂點在x軸上),並向下無限延伸。|a|越大,開口越小;|a|越小,開口越大.
4.畫拋物線y=ax2時,應先列表,再描點,最後連線。列表選取自變數x值時常以0為中心,選取便於計算、描點的整數值,描點連線時一定要用光滑曲線連接,並注意變化趨勢。
本節命題主要是考查二次函數的概念,二次函數y=ax2的圖象與性質的應用。
核心知識
規則1
二次函數的概念:
一般地,如果是常數,那麼,y叫做x的二次函數.
規則2
拋物線的有關概念:
圖13-14
如圖13-14,函數y=x2的圖象是一條關於y軸對稱的曲線,這條曲線叫拋物線.實際上,二次函數的圖象都是拋物線.拋物線y=x2是開口向上的,y軸是這條拋物線的對稱軸,對稱軸與拋物線的交點是拋物線的頂點.
規則3
拋物線y=ax2的性質:
一般地,拋物線y=ax2的對稱軸是y軸,頂點是原點,當a>0時,拋物線y=ax2的開口向上,當a<0時,拋物線y=ax2的開口向下.
規則4
1.二次函數的概念
(1)定義:一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0),那麼,y叫做x的的二次函數. (2)二次函數y=ax2+bx+c的結構特徵是:等號左邊是函數y,右邊是自變數x的二次式,x的最高次數是2.其中一次項系數b和常數項c可以是任意實數,而二次項系數a必須是非零實數,即a≠0.
2.二次函數y=ax2的圖像
圖13-1
用描點法畫出二次函數y=x2的圖像,如圖13-1,它是一條關於y軸對稱的曲線,這樣的曲線叫做拋物線.
因為拋物線y=x2關於y軸對稱,所以y軸是這條拋物線的對稱軸,對稱軸與拋物線的交點是拋物線的頂點,從圖上看,拋物線y=x2的頂點是圖象的最低點.因為拋物線y=x2有最低點.所以函數y=x2有最小值,它的最小值就是最低點的縱坐標.
3.二次函數y=ax2的性質
函數
圖像
開口方向
頂點坐標
對稱軸
函數變化
最大(小)值
y=ax2
a>0
向上
(0,0)
Y軸
x>0時,y隨x增大而增大;
x<0時,y隨x增大而減小.
當x=0時,y最小=0.
y=ax2
a<0
向下
(0,0)
Y軸
x>0時,y隨x增大而減小;
x<0時,y隨x增大而增大.
當x=0時,y最大=0.
4.二次函數y=ax2的圖像的畫法
用描點法畫二次函數y=ax2的圖像時,應在頂點的左、右兩側對稱地選取自變數x的值,然後計算出對應的y值,這樣的對應值選取越密集,描出的圖像越准確.
二次函數y=ax2+bx+c
學習要求:
1.會用描點法畫出二次函數的圖象.
2.能利用圖象或通過配方確定拋物線的開口方向及對稱軸、頂點、的位置.
*3.會由已知圖象上三個點的坐標求出二次函數的解析式.
重點難點
1.本節重點是二次函數y=ax2+bx+c的圖象和性質的理解及靈活運用,難點是二次函數y=ax2+bx+c的性質和通過配方把解析式化成y=a(x-h)2+k的形式。
2.學習本小節需要仔細觀察歸納圖象的特點以及不同圖象之間的關系。把不同的圖象聯系起來,找出其共性。
一般地幾個不同的二次函數,如果二次項系數a相同,那麼拋物線的開口方向、開口大小(即形狀)完全相同,只是位置不同.
任意拋物線y=a(x-h)2+k可以由拋物線y=ax2經過適當地平移得到,具體平移方法如下圖所示:
注意:上述平移的規律是:「h值正、負,右、左移;k值正、負,上、下移」實際上有關拋物線的平移問題,不能死記硬背平移規律,只要先將其解析式化為頂點式,然後根據它們的頂點的位置關系,確定平移方向和平移的距離非常簡便.
圖13-11
例如,要研究拋物線L1∶y=x2-2x+3與拋物線L2∶y=x2的位置關系,可將y=x2-2x+3通過配方變成頂點式y=(x-1)2+2,求出其頂點M1(1,2),因為L2的頂點為M2(0,0),根據它們的頂點的位置,容易看出:由L2向右平移1個單位,再向上平移2個單位,即得L1;反之,由L1向左平移1個單位,再向下平移2個單位,即得L2.
二次函數y=ax2+bx+c的圖象與y=ax2的圖象形狀完全一樣,它們的性質也有相似之處。當a>0時,兩條拋物線的開口都向上,並向上無限延伸,拋物線有最低點,y有最小值,當a<0時,開口都向下,並向下無限延伸,拋物線有最高點,y有最大值.
3.畫拋物線時一定要先確定開口方向和對稱軸、頂點位置,再利用函數對稱性列表,這樣描點連線後得到的才是完整的,比較准確的圖象。否則畫出的圖象,往往只是其中一部分。例如畫y=- (x+1)2-1的圖象。
列表:
x
-3
-2
-1
0
1
2
3
y
-3
-1.5
-1
-1.5
-3
-5.5
-9
描點,連線成如圖13-11所示不能反映其全貌的圖象。
正解:由解析式可知,圖象開口向下,對稱軸是x=-1,頂點坐標是(-1,-1)
列表:
x
-4
-3
-2
-1
0
1
2
y
-5.5
-3
-1.5
-1
-1.5
-1.5
-5.5
描點連線:如圖13-12
圖13-12
4.用配方法將二次函數y=ax2+bx+c化成y=a(x-h)2+k的形式,首先要提出二次項系數a。常犯的錯誤只提第一項,後面漏提。如y=- x2+6x-21 寫成y=- (x2+6x-21)或y=- (x2-12x-42)把符號弄錯,主要原因是沒有掌握添括弧的規則。
本節命題主要考查二次函數y=ax2+bx+c的圖象和性質及其在實際生活中的運用。既有填空題、選擇題,又有解答題,與方程、幾何、一次函數的綜合題常作為中考壓軸題。
核心知識
規則1
拋物線 y=a(x-h)2+k 的性質:
一般地,拋物線 y=a(x-h)2+k 與 y=ax2 形狀相同,位置不同.拋物線 y=a(x-h)2+k 有如下特點:
(l) a>0時,開口向上;a<0時,開口向下;
(2) 對稱軸是直線x=h;
(3) 頂點坐標是(h,k).
規則2
二次函數 y=ax2+bx+c 的性質:
y=ax2+bx+c ( a,b,c 是常數,a≠0)是二次函數,圖象是拋物線.利用配方,可以把二次函數表示成 y=a(x-h)2+k 的形式,由此可以確定這條拋物線的對稱軸是直線 ,頂點坐標是 ,當a>0時,開口向上;a<0時,開口向下.
規則3
1.二次函數解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點.
(2)當拋物線y=ax2+bx+c與x軸有交點時,即對應二次方程ax2+bx+c=0有實數根x1和
x2存在時,根據二次三項式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數y=ax2+bx+c可轉化為兩根式y=a(x-x1)(x-x2).
2.二次函數解析式的確定
確定二次函數解析式,一般仍用待定系數法.由於二次函數解析式有三個待定系數a、b、c(或a、h、k或a、x1、x2),因而確定二次函數解析式需要已知三個獨立的條件.當已知拋物線上任意三個點的坐標時,選用一般式比較方便;當已知拋物線的頂點坐標時,選用頂點式比較方便;當已知拋物線與x軸兩個點的坐標(或橫坐標x1,x2)時,選用兩根式較為方便.
注意:當選用頂點式或兩根式求二次函數解析式時,最後一般都要化一般式.
3.二次函數y=ax2+bx+c的圖像
二次函數y=ax2+bx+c的圖像是對稱軸平行於(包括重合)y軸的拋物線.
4.二次函數的性質
根據二次函數y=ax2+bx+c的圖像可歸納其性質如下表:
函數
二次函數y=ax2+bx+c(a,b,c是常數,a≠0)
圖
像
a>0
a<0
(1)拋物線開口向上,並向上無限延伸.
(2)對稱軸是x=- ,頂點坐標是(- , ).
(3)當x<- 時,y隨x的增大而減小;當x>- 時,y隨x的增大而增大.
(4)拋物線有最低點,當x=- 時,y有最小值,y最小值= .
(1) )拋物線開口向下,並向下無限延伸.
(2)對稱軸是x=- ,頂點坐標是(- , ).
(3)當x<- 時,y隨x的增大而增大;當x>- 時,y隨x的增大而減小.
(4)拋物線有最高點,當x=- 時,y有最大值,y最大值= .
5.求拋物線的頂點、對稱軸、最值的方法
①配方法:將解析式化為y=a(x-h)2+k的形式,頂點坐標(h,k),對稱軸為直線x=h,若a>0,y有最小值,當x=h時,y最小值=k,若a<0,y有最大值,當x=h時,y最大值=k.
②公式法:直接利用頂點坐標公式(- , ),求其頂點;對稱軸是直線x=- ,若a>0,y有最小值,當x=- 時,y最小值= ,若a<0,y有最大值,當x=- 時,y最大值= .
6.二次函數y=ax2+bx+c的圖像的畫法
因為二次函數的圖像是拋物線,是軸對稱圖形,所以作圖時常用簡化的描點法和五點法,其步驟是:
(1)先找出頂點坐標,畫出對稱軸;
(2)找出拋物線上關於對稱軸的四個點(如與坐標軸的交點等);
(3)把上述五個點按從左到右的順序用平滑曲線連結起來.
7.二次函數y=ax2+bx+c的圖像的位置與a、b、c及Δ符號有密切的關系(見下表):
項
目
字
母
字母的符號
圖像的位置
a
a>0
a<0
開口向上 開口向下
b
b=0 ab>0 ab<0
對稱軸為y軸 對稱軸在y軸左側 對稱軸在y軸右側
c
c=0 c>0 c<0
經過原點 與y軸正半軸相交 與y軸負半軸相交
8.二次函數與一元二次方程的關系
二次函數y=ax2+bx+c的圖像(拋物線)與x軸的兩個交點的橫坐標x1、x2,是對應的一元二次方程ax2+bx+c=0的兩個實數根.拋物線與x軸的交點情況可以由對應的一元二次方程的根的判別式判定:
Δ>0 拋物線與x軸有2個交點;
Δ=0 拋物線與x軸有1個交點;
Δ<0 物線與x軸有0個交點(沒有交點).