有如下:
1、24.6-3.98+5.4-6.02
解析:此題利用加法交換結合律,湊整再計算。步驟如下:
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用湊整法和減法結合律計算,先利用湊整法把99變換為(100-1),再運用a-b-c=a-(b+c)來簡便計算,步驟如下:
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
⑵ 四年級數學簡算的方法
1、方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
2、方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
四年級數學簡便計算方法技巧:
1、分配法
括弧里是加或減運算,與另一個數相乘,注意分配。例:45×(10+2)=45×10+45×2=450+90=540
2、提取公因式
注意相同因數的提取。例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
3、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
4、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。
四年級數學簡便方法:
1、加法的簡便運算。加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。
2、乘法的簡便運算之一。巧用乘法交換律和乘法結合律進行簡便運算。其基本方法也是通過交換和結合達到湊成整十、整百、整千的數,便於我們口算出結果。
3、減法的簡便運算。減法的簡便運算主要是運用減法的運算性質,即連減兩個數等於減去這兩個數的和。
⑷ 用簡便方法計算四年級
用簡便方法計算如下:
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
(4)四年級數學使用簡便的方法運算擴展閱讀:
小學數學簡便運算的6個技巧:
1、運用加法結合律進行簡算
(a+b)+c=a+(b+c)
例1、5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+10
=20
例2、37.24+23.79-17.24
=37.24-17.24+23.79
=20+23.79
=43.79
2、運用乘法結合律進行簡算:這種題型往往含特殊數字之間相乘
(a×b)×c=a×(b×c)
例3、4×3.78×0.25
=4×0.25×3.78
=1×3.78
=3.78
例4、125×246×0.8
=125×0.8×246
=100×246
=24600
3、利用乘法分配律進行簡算:(做這種題,一定不要急著去算,先要分析各數字之間的特殊關系。也就是先要仔細觀察,找到做題的竅門。)
(a+b)×c=a×c+b×c
(a-b)×c=a×c-b×c
例5、(2.5+12.5)×40
=2.5×40+12.5×40
=100+500
=600
例6、3.68×4.79+6.32×4.79
=(3.68+6.32)×4.79
=10×4.79
=47.9
例7.26.86×25.66-16.86×25.66
=(26.86-16.86)×25.66
=10×25.66
=256.6
4、利用加減乘除把數拆分後再利用乘法分配律進行簡算:
例8、34×9.9
=34×(10-0.1)
=34×10-34×0.1
=340-3.4
=336.6
例9、57×101
=57×(100+1)
=57×100+57×1
=5757
例10、7.8×1.1
=7.8×(1+0.1)
=7.8×1+7.8×0.1
=7.8+0.78
=8.58
例11、25×32
=25×4×8
=100×8
=800
5、連減與連除
a-b-c=a-(b+c)a÷b÷c=a÷(b×c)
例12、56.5-3.7-6.3
=56.5-(3.7+6.3)
=56.5-10
=46.5
例13、32.6÷0.4÷2.5
=32.6÷(0.4×2.5)
=32.6÷1
=32.6
6、需要變形才能進行的簡便運算:做這一類題,要先觀察,找出規律,然後變形後進行簡算。
例14、86.7×0.356+1.33×3.56
=8.67×3.56+1.33×3.56
=(8.56+1.33)×3.56
=10×3.56
=35.6
⑸ 四年級數學簡便計算有那些
一、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、結合律
(一)加括弧法
1.當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括弧法
1.當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
2.當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
1.分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
3.注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900
⑹ 四年級簡便運算的技巧和方法是什麼
四年級簡便運算的技巧和方法是需要記住公式。按照公式進行計算就是竅門。
方法:
加法交換律 a+b=b+a。
加法結合律 (a+b)+c=a+(b+c)。
乘法交換律 a×b=b×a也可以寫成:a·b=b·a還可以寫成:ab=ba。
乘法結合律 (a×b)×c=a×(b×c)也可以寫成:(a·b)·c=a·(b·c)還可以寫成:(ab)c=a(bc)。
乘法分配律 (a+b)×c=a×c+b×c也可以寫成:(a+b)·c=a·c+b·c還可以寫成:(a+b)c=ac+bc。
乘法交換律:兩個數相乘,交換因數的位置,積不變。ab=ba。
乘法結合律:三個數相乘,可以先乘前兩個數,或者先乘後兩個數,積不變。 (ab)c=a(bc)。
分配律:分配律是乘法運算的一種簡便運算,可用於分數、小數中。
主要公式為(a+b)c=ac+bc。兩個數的和與一個數相乘,可以先把它們分別與這個數相乘,再相加,積不變,這叫做乘法分配律。
⑺ 數學簡便計算方法技巧四年級簡單易懂
1.提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
6.利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交換律,a+b=b+a
結合律,(a+b)+c=a+(b+c)
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(與加法類似):
交換律,a*b=b*a
結合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
8.裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
公式: