A. 行列式怎麼算啊
三階行列式計算方法有:
1、降價法(公式法)
B. 快速計算行列式的方法
快速計算行列式的方法?線性代數行列式有如下計算技巧:
1、行列式A中某行(或列)用同一數k乘,其結果等於kA。
2、行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
3、若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
4、行列式A中兩行(或列)互換,其結果等於-A。 ⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。
線性代數行列式在數學中,是一個函數,其定義域為det的矩陣A,取值為一個標量,寫作det(A)或 | A | 。無論是在線性代數、多項式理論,還是在微積分學中(比如說換元積分法中),行列式作為基本的數學工具,都有著重要的應用。
(2)行列式計算怎麼能想到方法擴展閱讀:
線性代數重要定理:
1、每一個線性空間都有一個基。
2、對一個 n 行 n 列的非零矩陣 A,如果存在一個矩陣 B 使 AB = BA =E,則 A 為非奇異矩陣(或稱可逆矩陣),B為A的逆陣。
3、矩陣非奇異(可逆)當且僅當它的行列式不為零。
4、矩陣非奇異當且僅當它代表的線性變換是個自同構。
5、矩陣半正定當且僅當它的每個特徵值大於或等於零。
6、矩陣正定當且僅當它的每個特徵值都大於零。
7、解線性方程組的克拉默法則。
8、判斷線性方程組有無非零實根的增廣矩陣和系數矩陣的關系。
註:線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
C. 行列式的計算方法是什麼
簡單地說,行列式的主要功能體現在計算機科學中
現在數學課上學習行列式,就是為了讓我們理解一些計算原理
我先講行列式怎麼計算吧
二階行列式(行列式兩邊的豎線我不會打,看得懂就行):
a b
c d
它的值就等於ad-bc,即對角相乘,左上-右下的那項為正,右上-左下的那項為負
三階行列式:
a b c
d e f
g h i
它的值等於aei+bfg+cdh-afh-bdi-ceg,你在紙上用線把每一項里的三個字母連起來就知道規律了
計算機就是用行列式解方程組的
比如下面這個方程組:
x+y=3
x-y=1
計算機計算的時候,先計算x,y系數組成的行列式D:
1 1
1 -1
D=-2
然後,用右邊兩個數(3和1)分別代替x和y的系數得到兩個行列式Dx和Dy:
3 1
1 -1
Dx=-4
1 3
1 1
Dy=-2
用Dx除以D,就是x的值,用Dy除以D,就是y的值了
D. 計算行列式需要掌握的基本方法是什麼
計算行列式的方法很多,但具體到一個行列式,要針對其特徵,選取適當的方法,才能提高解題的效率。對於低階行列式的計算,一般根據其特點,利用行列式的性質,將其逐步化為上(或下)三角形行列式,或者根據行列式按一行(或一列)展開公式進行降階處理。而對於一般的n階行列式,當行列式中出現了許多零,這時可利用定義計算外,除此常用的方法有以下幾種:1.直接利用行列式的性質計算例1證明:奇數階反對稱行列式為零。
E. 行列式怎麼算
線性代數行列式的計算技巧: 1.利用行列式定義直接計算例1 計算行列式 解 Dn中不為零的項用一般形式表示為 該項列標排列的逆序數t(n-1 n-2?1n)等於,故 2.利用行列式的性質計算例2 一個n階行列式的元素滿足 則稱Dn為反對稱行列式,證明:奇數階反對稱行列式為零. 證明:由 知,即 故行列式Dn可表示為 由行列式的性質 當n為奇數時,得Dn =-Dn,因而得Dn = 0.。 3.化為三角形行列式若能把一個行列式經過適當變換化為三角形,其結果為行列式主對角線上元素的乘積。因此化三角形是行列式計算中的一個重要方法。 4.降階法降階法是按某一行(或一列)展開行列式,這樣可以降低一階,更一般地是用拉普拉斯定理,這樣可以降低多階,為了使運算更加簡便,往往是先利用列式的性質化簡,使行列式中有較多的零出現,然後再展開。 5.遞推公式法遞推公式法:對n階行列式Dn找出Dn與Dn-1或Dn與Dn-1, Dn-2之間的一種關系——稱為遞推公式(其中Dn, Dn-1, Dn-2等結構相同),再由遞推公式求出Dn的方法稱為遞推公式法。 6.利用范德蒙行列式 7.加邊法(升階法)加邊法(又稱升階法)是在原行列式中增加一行一列,且保持原行列式不變的方法。 8.數學歸納法 9.拆開法把某一行(或列)的元素寫成兩數和的形式,再利用行列式的性質將原行列式寫成兩行列式之和,使問題簡化以利計算。
F. 行列式的計算方法總結是什麼
最直接的就是按行按列展開 3階的還行 階數高了 就麻煩了 主要方法就是 比如按行展開的 就是這一行中的每一個元素乘以對應的代數餘子式最後再加起來
第二種方法呢 就是根據行列式的性質來做,有如下性質:
(1)行列式和他的轉置行列式相等
(2)變換一個行列式的兩行(或兩列),行列式改變符號 即變為之前的相反數
(3)如果一個行列式有兩行(列)完全相同,那麼這個行列式等於零
(4)一個行列式中的某一行(列)所有元素的公因子可以提到行列式符號的外面
(5)如果一個行列式中有一行(列)的元素全部是零,那麼這個行列式等於零
(6)如果一個行列式有兩行(列)的對應元素成比例,那麼這個行列式等於零
(7)把行列式的某一行(列)的元素乘以同一個數後加到另一行(列)的對應元素上,行列式不變
最長用的是性質2,4,7
G. 行列式有什麼計算方法呢
充分利用行列式的特點化簡行列式是很重要的。 二 降階法根據行列式的特點,利用行列式性質把某行(列)化成只含一個非零元素,然後按該行(列)展開。展開一次,行列式降低一階,對於階數不高的數字行列式本法有效。 三 拆成行列式之和(積) 把一個復雜的行列式簡化成兩個較為簡單的。 四 利用范德蒙行列式 根據行列式的特點,適當變形(利用行列式的性質——如:提取公因式;互換兩行(列);一行乘以適當的數加到另一行(列)去; ...) 把所求行列式化成已知的或簡單的形式。其中范德蒙行列式就是一種。這種變形法是計算行列式最常用的方法。 五 數學歸納法 當與 是同型的行列式時,可考慮用數學歸納法求之。 六 逆推法建立起 與 的遞推關系式,逐步推下去,從而求出 的值。 有時也可以找到 與, 的遞推關系,最後利用 , 得到 的值。 七 加邊法要求:1 保持原行列式的值不變; 2 新行列式的值容易計算。根據需要和原行列式的特點選取所加的行和列。加邊法適用於某一行(列)有一個相同的字母外,也可用於其第 列(行)的元素分別為 n-1 個元素的倍數的情況。 八 綜合法計算行列式的方法很多,也比較靈活,總的原則是:充分利用所求行列式的特點,運用行列式性質及上述常用的方法,有時綜合運用以上方法可以更簡便的求出行列式的值;有時也可用多種方法求出行列式的值。九 行列式的定義
H. 行列式是如何計算的
1、利用行列式定義直接計算:
行列式是由排成n階方陣形式的n²個數aij(i,j=1,2,...,n)確定的一個數,其值為n!項之和。
(8)行列式計算怎麼能想到方法擴展閱讀:
行列式的基本性質:
(1)行列式A中某行(或列)用同一數k乘,其結果等於kA。
(2)行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
(3)若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
(4)行列式A中兩行(或列)互換,其結果等於-A。 ⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。
I. 計算行列式常用的7種方法
(1)行列式和他的轉置行列式相等。
(2)變換一個行列式的兩行(或兩列),行列式改變符號 即變為之前的相反數。
(3)如果一個行列式有兩行(列)完全相同,那麼這個行列式等於零。
(4)一個行列式中的某一行(列)所有元素的公因子可以提到行列式符號的外面。
(5)如果一個行列式中有一行(列)的元素全部是零,那麼這個行列式等於零。
(6)如果一個行列式有兩行(列)的對應元素成比例,那麼這個行列式等於零。
(7)把行列式的某一行(列)的元素乘以同一個數後加到另一行(列)的對應元素上,行列式不變。
根據行列式的特點,適當變形(利用行列式的性質——如:提取公因式;互換兩行(列);一行乘以適當的數加到另一行(列)去;把所求行列式化成已知的或簡單的形式。其中范德蒙行列式就是一種。這種變形法是計算行列式最常用的方法。
(9)行列式計算怎麼能想到方法擴展閱讀:
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
④行列式A中兩行(或列)互換,其結果等於-A。
⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。
J. 行列式的計算方法總結
第一、行列式的計算利用的是行列式的性質,而行列式的本質是一個數字,所以行列式的變化都是建立在已有性質的基礎上的等量變化,改變的是行列式的「外觀」。
第二、行列式的計算的一個基本思路就是通過行列式的性質把一個普通的行列式變化成為一個我們可以口算的行列式(比如,上三角,下三角,對角型,反對角,兩行成比例等)
第三、行列式的計算最重要的兩個性質:
(1)對換行列式中兩行(列)位置,行列式反號
(2)把行列式的某一行(列)的倍數加到另一行(列),行列式不變
對於(1)主要注意:每一次交換都會出一個負號;換行(列)的主要目的就是調整0的位置,例如下題,只要調整一下第一行的位置,就能變成下三角。
矩陣的加法與減法運算將接收兩個矩陣作為輸入,並輸出一個新的矩陣。矩陣的加法和減法都是在分量級別上進行的,因此要進行加減的矩陣必須有著相同的維數。
為了避免重復編寫加減法的代碼,先創建一個可以接收運算函數的方法,這個方法將對兩個矩陣的分量分別執行傳入的某種運算。