26×102-26×2
=26×(102-2)
=26×100
=2600
用乘法分配律
望採納,謝謝
B. 用簡便計算怎麼計算
回復:
常用方法:利用`加法結合律'~~~乘法交換律~~~合並同類項~~~先乗除,後加減…
C. 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
D. 怎麼簡便 計算
脫式計算過程解析21×(5/7×1/4)×4
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
21×(5/7×1/4)×4
=21×5/7×(1/4×4)
=3×5×1
=15
(4)178101178簡便方法怎麼算擴展閱讀\化簡過程:判斷分數是否為最簡分數的依據可以根據分子分母的公因數是否只有1,如果只有1則該分數為最簡分數,反之不是最簡分數;若分子分母存再小數可以先進行化整後再判斷
解題過程:
因為分子分母的公因數為[1, 7]
21/7:最簡分數為3
存疑請追問,滿意請採納
E. 數學題用簡便方法算怎麼算
129+89
=(130-1)+(90-1)
=130-1+90-1
=(130+90)-(1+1)
=220-2
=218
F. 簡便演算法怎麼算
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。簡便計算中最常用的方法是乘法分配律。
乘法結合律也是比較常用的方法,三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。在進行簡便運算時,應注意運算符號和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。
G. 簡便方法怎麼計算
簡便方法就是做這道題更容易更快捷,怎麼計算看加減乘除法,加減法找湊十法 加法用結合率,交換率,把想加等十的結合在一起,減分也是一樣,但是打括弧和拆括弧要變符號,加變減減變加,加法不變符號,乘法記住25x4=100和125x8=1000,同樣用乘法交換率,結合率還有分配率去做,乘法不變符號,除法要變符號,這些都是在做簡便運算的時候可以用的上
H. 用簡便方法怎麼計算
一、交換律(帶符號搬家法) 當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。 例:256+78-56=256-56+78=200
I. 怎麼算簡便方法。
加法運算分為:加法交換律和加法結合律
乘法運算分為:乘法交換律、乘法結合律和乘法分配律
除法性質:商不變
減法性質: 差不變
小數性質
加法運算
加法交換律,加法結合律。
加法交換律
簡便運算兩個加數交換位置,和不變,這叫做加法交換律。
字母公式:a+b=b+a[1]
題例(簡算過程):6+18
= 18+6
= 24
加法結合律
先把前兩個數相加,或先把後兩個數相加,和不變叫做加法結合律。
字母公式:a+b+c=a+(b+c)
題例(簡算過程):6+18+2
= 6+(18+2)
= 6+20
= 26
乘法運算
乘法交換律,乘法結合律,乘法分配律的逆運算,乘法分配律
乘法交換律
兩個因數交換位置,積不變,這叫做乘法交換律。
字母公式:a×b=b×a
題例(簡算過程):12×8
=8×12
=96
乘法結合律
乘法結合律的概念為:先乘前兩個數,或先乘後兩個數,積不變。
字母公式:a×b×c=a×(b×c)
題例:30×25×4
=30×(25×4)
=30 ×100
=3000
乘法分配律
乘法分配律的概念為:兩個數的和,乘以一個數,可以拆開來算,積不變。
字母公式:(a+b)×c=a×c+b×c
例題:(2+3)×10
=3×10+2×10
=30+20
=50
乘法分配律的逆運算
乘法分配律的逆運算的概念為:一個數乘另一個數的積加它本身乘另一個數的積,可以把另外兩個數加起來再乘這個數
字母公式:ac+ab=a(c+b)
例題:3×4+3×5
=3×(4+5)
=3×9
= 27
除法性質
商不變,除法性質的概念
除法性質的概念為:一個數連續除以兩個數,可以先把後兩個數相乘,再相除。
字母公式:a÷b÷c=a÷(b×c)
題例(簡算過程):20÷8÷1.25
=20÷(8×1.25)
=20÷10
=2
商不變的規律
概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。 分數的基本性質:分數的分子和分母同時乘上或除以相同的數(0除外),分數的大小不變。比也是一樣的:兩個相比較的數擴大或縮小相同的倍數,比值不變。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
題例:80÷125
=(80×8)÷(125×8)
=640÷1000
=0.64
減法性質
一個數連續減去兩個數,可以用這個數減去兩個數的和。
字母公式:a-b-c=a-(b+c)
例題:12-6-4
=12-(6+4)
=12-10
=2
小數性質
小數的基本性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
J. 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2