1. 誰知道多位數乘法的快速計算方法
多位數乘法的快速計算方法如下:
1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一 個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
2. 數學乘法個位乘十位,十位乘十位百位乘百位,列的式子相乘時需要注意什麼,像這樣答題時怎麼向前進位
式子要自己悟,無論哪幾個位數互乘,先一個數的個位去乘另一個數,再用這個數的十位去乘這個數,然後百位,千位……最後把乘得數相加,遇到進位要留零頭上位,然後依次在各個位上進位上位
3. 先答先採簡便計算。
5×2+2.5×3
乘法的計演算法則:
數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊。
1、十位數是1的兩位數相乘方法:乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。
2、個位是1的兩位數相乘方法:十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。
3、十位相同個位不同的兩位數相乘方法:被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上。
簡便運算演算法
1、加法結合律
加法結合律為(a+b)+c=a+(b+c)。
例如,8+1+9=8+(1+9)=8+10=18
2、加法交換律
a+c=c+a。
例如,8+5=5+8=13。
3、乘法結合律
(axb)xc=ax(bxc)。
例如,3x2.5x4=3x(2.5x4)=3x10=30。
4、乘法分配律
(a+b)xc=axc+bxc。
4. 兩位數乘整十數的口算
兩位數乘整十數數的口算方法,把兩位數分解成(整十數)和(個位數)然後乘以整十數的十位數再相加,最後結果後面加上0即可。
兩位數乘法有:10×10、10×11、11×12、10×19、17×10等。
從10到99中任意兩個數相乘都是兩位數的乘法,兩位數乘法就是根據兩位數的不同特點,遵循速演算法則,最終快速算出結果。
乘法的計演算法則:
數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊。
1、十位數是1的兩位數相乘方法:乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。
2、個位是1的兩位數相乘方法:十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。
3、十位相同個位不同的兩位數相乘方法:被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上。
5. 十位數乘法速算技巧是什麼
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1 2+4=6 2×4=8 12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3 2×3=6 3×7=21 23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4 4×4=16 7×4=28 37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
乘法運演算法則:
1、單項式多項式
單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。
注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。
2、多項式法則
多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式)
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
6. 個位不同十位相同的乘法秘籍
幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾.
例:21×41=?
2×4=8
2+4=6
1×1=1
21×41=861
7. 這些算式的簡便演算法,要有解釋!!(備註:*為乘號)
你好,這個幾乎沒有簡便演算法去算每一個
對於中學數學來說,1到20的平方要求熟記的,也就是要記住結果
我知道的可以簡便的如下:
1、個位是5的數,結果是十位乘以十位多1的數後,直接補25即可
如15²,1x(1+1)=1x2=2 所以15²=225
如25²,2x3=6 所以25²=625
如45²,4x5=20 所以45²=2025
2、個位為0的,就比較簡便了,十位平方後直接補2個0即可,如20²=400
3、對於其他的數,就看這個數跟幾十還是跟幾十五最接近了,利用完全平方公式去簡便計算
公式為(a±b)²=a²±2ab+b²
口訣:首平方,尾平方,首尾之積的2倍加減在中央
比如:
29跟30最接近,所以29²=(30-1)²=30²-2×30+1²=900-60+1=841
26跟25最接近,所以26²=(25+1)²=25²+2×25+1²=625+50+1=676
答題不易,請採納,謝謝
8. 兩位數的乘法怎麼算最簡便
一、兩位數乘兩位數。1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。例:13×326=?解:13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一。數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法。所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的。就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位。具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221。類似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了。在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法。我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10。它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數。具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925。類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明。通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位。(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數。具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數。具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數。具體到上面例子,4×5+3=23。則2和3分別是得數的千位數和百位數。因此,42×56=2352。再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954。同樣,用這種演算法,很容易得出所有兩位數乘法的積。
9. 124乘以12的簡便運演算法
124乘以12,乘數乘以乘數先從各位乘起,乘完個位乘十位,然後把結果加在一起就行了。
10. 多位數乘法的快速計算方法有哪些
多位數乘法的快速計算方法如下:
1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。
2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。
3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。
乘法原理:
如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
設 A是 m×n 的矩陣。
可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故兩個方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以綜上 r(A)=r(A')=r(AA')=r(A'A)