❶ 六年級簡便計算的竅門和技巧
1.乘法分配律,如果可以簡便的括弧里加某數減某數,括弧外乘某數就把裡面的算式拆開,分別與外面的那個數相乘(外面的也可以是乘多個數)
2.上述做法在除法里也可以應用,但是先要把外面的除某數改成乘以這個數的倒數(這里的知識點是六年級上冊的分數除法)
3.乘法交換律,如果是乘法的話,可以試一試交換分數的分子或分母,除法的話,也可以變成它的倒數試一下(在分數乘法中交換分數的分子或者分母不改變積的大小)
4.乘法分配律的逆運算,看算式中有沒有相同的因數,注意是乘法組,有的話可以把另外兩個不同的因數加或減起來(這里用括弧括上,並且注意兩組乘法算式之間是加還是減)
5.上一條說的也有一種情況,就是會有一個單獨的數存在(注意這里單獨的數指的是他不與任何數相乘,但是他卻是另外兩組或一組乘法算式的那個公因數)這時我們把它看作是乘以了一,也可以括在括弧里進行計算
6.還有就是除了乘法分配律,另外的乘法交換律和乘法結合律也可以在分數乘法計算中應用(當然,加法交換律和加法結合律也是可以的),看哪裡可以約分,就把他們兩個移動到一起計算,注意這里是不是平級運算,不是的話不可以
❷ 加減乘除的簡便運算方法
加減乘除的簡便計算方法:
復習重點:
1、小數加、減的計算方法及應用加法運算律進行簡便計算。
2、小數乘(除)以整數的計算方法、小數點位置移動引起小數大小變化的規律
3、小數乘(除)以小數的計算方法、求積(商)的近似值、應用乘法運算律進行簡便計算。
復習難點:
1、應用加法運算律進行簡便計算。
2、
小數點位置移動引起小數大小變化的規律。
3、
求積(商)的近似值和應用乘法運算律進行簡便計算
教學過程:
一:知識梳理:
小數四則混合運算和簡便計算。
(1)小數加減法要相同數位上的數對齊。小數乘法末尾對齊。
(2)小數乘法:先按整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。積的末尾有0要化簡。
(3)小數除以整數:除到哪一位,商就寫在哪一位上,商的小數點和被除數的小數點對齊,商的整數部分不夠商1,個位上就寫0,如果除到被除數的末尾還有餘數,添0再繼續除。小數除以小數,先把除數變成整數,除數的小數點右移幾位,被除數的小數點也向右移動相同的位數,再按除數是整數的小數除法計算。
(4)循環小數、近似數(四捨五入法,進一法,去尾法)。
(5)簡便計算:運算律的運用和一些特殊的運算方法,(去括弧的時候如果括弧前面是減號和除號要注意變符號,例如:
a÷(b×c)=a÷b÷c,a-b-c=a-(b+c),a-(b-c)=a-b+c)
❸ 六年級簡便運算的技巧和方法是什麼
綜述,六年級簡便運算的技巧和方法有提取公因式、借來借去法、拆分法和乘法分配律結、利用基準數、利用公式法、裂項法等等。
一、提取公因式
這個方法實實際是運用子乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)
二、借來借去法
考試中有看到998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。還要注意還,有借有還,再借不難。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4
三、拆分法和乘法分配律結
這種方法要靈活掌握拆分法和乘法分配律,看到99、101、9.8等接近一個整數的時候,首先考慮拆分。
例如:34×9.9=34×(10-0.1)
四、利用基準數
在一系列數中找出一個折中的數字來代表這一系列的數字,當然要記得這一數字的選擇不能偏離這一系列數字太遠。
例如:2072+2052+2062+2042+2083=(2062×5)+10-10-20+21
五、利用公式法
(1)加法交換律:兩數相加交換加數的位置,和不變。
(2)加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
(3)乘法交換律:兩數相乘,交換因數的位置,積不變。
(4)乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
(5)乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(6)除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
六、裂項法
分數裂項是指將分數版式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱這國裂項法。
如:1/[n(n+1)]=(1/n)-[1/(n+1)]
1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
❹ 六年級簡便運算的總結性公式
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配率:a×(b+c)=a×b+a×c
❺ 小學數學簡便計算公式
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
❻ 六年級數學簡便運算有哪些
數學簡便計算方法:
1、加法交換律:a+b=b+a兩個加數交換位置,和不變,這叫做加法交換律。
2、加法結合律:(a+b)+c=a+(b+c)先把前兩個數相加或者先把後兩個數相加,和不變,這叫做加法結合律。
3、乘法交換律:a×b=b×a交換兩個因數的位置,積不變,這叫做乘法交換律。
4、乘法結合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)先把前兩個數相乘或者先把後兩個數相乘,積不變,這叫做和乘法結合律。
5、乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c乘法分配律的逆運用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加,這叫做乘法分配律。
6、在加法和減法的混合運算中,可以交換減數、加數的位置。但必須在交換位置時,連同前面的運算符號一起「搬家」,運算的結果不會改變。即:a-(b-c)=a-b+c;a-(b+c)=a-b-c7。
❼ 簡便運算的技巧和方法六年級上冊
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+20
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:3.2×12.5×25
=8×0.4×12.5×25
=(8×12.5)×(0.4×25)
=100×10
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=0.92×10
=9.2
❽ 六年級下冊數學簡便計算有哪些
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很雜的式子變得很易計算出得數。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變,如:(2+4)×5=2×5+4×56。
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
簡便計算方法:
1、在同級運算中,可以任意交換數字的位置,但要連著前面的符號一起交換。(加法或乘法交換律)
2 、在同級運算中,加號或乘號後面可以直接添括弧,去括弧;減號、除號後面添括弧,去括弧,括弧裡面的要變號。(加法或乘法結合律)
3、湊一法,湊十法,湊百法,湊千法:「前面湊九,末尾湊十」。
必記:25找4湊100,125找8湊1000 (湊整思想)。
❾ 數學乘法簡便計算方法技巧有哪些
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
示例:
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
示例:
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
示例:
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
示例:
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
數學乘法運算定律
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1、乘法交換律:ab=ba,註:字母與字母相乘,乘號不用寫,或者可以寫成「·」。
2、乘法結合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc