❶ 監督學習 非監督學習 半監督學習 包含哪些演算法
半監督學習(Semi-Supervised Learning,SSL)是模式識別和機器學習領域研究的重點問題,是監督學習與無監督學習相結合的一種學習方法。半監督學習使用大量的未標記數據,以及同時使用標記數據,來進行模式識別工作。當使用半監督學習時,將會要求盡量少的人員來從事工作,同時,又能夠帶來比較高的准確性,因此,半監督學習目前正越來越受到人們的重視。
❷ 機器學習有哪些學習方法
在繼續學,我感覺有一些特定的方式來完成你的思想思維以及思想作為。
❸ 非監督學習對樣本進行聚類的常見方法有哪幾種
有簡單聚類方法、層次聚類法以及動態聚類法
❹ 什麼是無監督學習
無監督學習:設計分類器時候,用於處理未被分類標記的樣本集
目標是我們不告訴計算機怎麼做,而是讓它(計算機)自己去學習怎樣做一些事情。非監督學習一般有兩種思路。第一種思路是在指導Agent時不為其指定明確的分類,而是在成功時採用某種形式的激勵制度。需要注意的是,這類訓練通常會置於決策問題的框架里,因為它的目標不是產生一個分類系統,而是做出最大回報的決定。這種思路很好的概括了現實世界,Agent可以對那些正確的行為做出激勵,並對其他的行為進行處罰。
強化學習的一些形式常常可以被用於非監督學習,由於沒有必然的途徑學習影響世界的那些行為的全部信息,因此Agent把它的行為建立在前一次獎懲的基礎上。在某種意義上,所有的這些信息都是不必要的,因為通過學習激勵函數,Agent不需要任何處理就可以清楚地知道要做什麼,因為它(Agent)知道自己採取的每個動作確切的預期收益。對於防止為了計算每一種可能性而進行的大量計算,以及為此消耗的大量時間(即使所有世界狀態的變遷概率都已知),這樣的做法是非常有益的。另一方面,在嘗試出錯上,這也是一種非常耗費時間的學習。
不過這一類學習可能會非常強大,因為它假定沒有事先分類的樣本。在某些情況下,例如,我們的分類方法可能並非最佳選擇。在這方面一個突出的例子是Backgammon(西洋雙陸棋)游戲,有一系列計算機程序(例如neuro-gammon和TD-gammon)通過非監督學習自己一遍又一遍的玩這個游戲,變得比最強的人類棋手還要出色。這些程序發現的一些原則甚至令雙陸棋專家都感到驚訝,並且它們比那些使用預分類樣本訓練的雙陸棋程序工作得更出色。
一種次要的非監督學習類型稱之為聚合(clustering)。這類學習類型的目標不是讓效用函數最大化,而是找到訓練數據中的近似點。聚合常常能發現那些與假設匹配的相當好的直觀分類。例如,基於人口統計的聚合個體可能會在一個群體中形成一個富有的聚合,以及其他的貧窮的聚合。
❺ 監督學習與無監督學習有什麼不同
監督學習與無監督學習的區別:
1、原理不同
監督學習是指利用一組已知類別的樣本調整分類器的參數,使其達到所要求性能的過程。無監督學習指根據類別未知(沒有被標記)的訓練樣本解決模式識別中的各種問題的過程。
2、演算法不同
監督學習的演算法是通過分析已知類別的訓練數據產生的。無監督學習的演算法主要有主成分分析方法、等距映射方法、局部線性嵌入方法、拉普拉斯特徵映射方法、黑塞局部線性嵌入方法和局部切空間排列方法等。
3、適用條件不同
監督學習適用於樣本數據已知的情況。非監督學習適用於無類別信息的情況。
以上回答參考:網路-監督學習、網路-無監督學習
❻ 有監督和無監督學習都各有哪些有名的演算法和深度學習
聽他人說的:無監督與監督學習的區別在於一個無教學值,一個有教學值。但是,個人認為他們的區別在於無監督學習一般是採用聚簇等演算法來分類不同樣本。而監督學習一般是利用教學值與實際輸出值產生的誤差,進行誤差反向傳播修改權值來完成網路修正的。但是無監督學習沒有反向傳播修改權值操作,當然這里只是說的是特徵提取階段。
❼ 監督學習和無監督學習的區別
機器學習的常用方法,主要分為有監督學習(supervised learning)和無監督學習(unsupervised learning)。
監督學習,就是人們常說的分類,通過已有的訓練樣本(即已知數據以及其對應的輸出)去訓練得到一個最優模型(這個模型屬於某個函數的集合,最優則表示在某個評價准則下是最佳的),再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現分類的目的,也就具有了對未知數據進行分類的能力。在人對事物的認識中,我們從孩子開始就被大人們教授這是鳥啊、那是豬啊、那是房子啊,等等。我們所見到的景物就是輸入數據,而大人們對這些景物的判斷結果(是房子還是鳥啊)就是相應的輸出。當我們見識多了以後,腦子里就慢慢地得到了一些泛化的模型,這就是訓練得到的那個(或者那些)函數,從而不需要大人在旁邊指點的時候,我們也能分辨的出來哪些是房子,哪些是鳥。監督學習里典型的例子就是KNN、SVM。
無監督學習(也有人叫非監督學習,反正都差不多)則是另一種研究的比較多的學習方法,它與監督學習的不同之處,在於我們事先沒有任何訓練樣本,而需要直接對數據進行建模。這聽起來似乎有點不可思議,但是在我們自身認識世界的過程中很多處都用到了無監督學習。比如我們去參觀一個畫展,我們完全對藝術一無所知,但是欣賞完多幅作品之後,我們也能把它們分成不同的派別(比如哪些更朦朧一點,哪些更寫實一些,即使我們不知道什麼叫做朦朧派,什麼叫做寫實派,但是至少我們能把他們分為兩個類)。無監督學習里典型的例子就是聚類了。聚類的目的在於把相似的東西聚在一起,而我們並不關心這一類是什麼。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了。
❽ 如何有效實現無監督學習
目標是我們不告訴計算機怎麼做,而是讓它(計算機)自己去學習怎樣做一些事情。非監督學習一般有兩種思路。第一種思路是在指導Agent時不為其指定明確的分類,而是在成功時採用某種形式的激勵制度。需要注意的是
❾ 非監督學習有哪些
在機器學習,無監督學習的問題是,在未加標簽的數據中,試圖找到隱藏的結構。因為提供給學習者的實例是未標記的,因此沒有錯誤或報酬信號來評估潛在的解決方案。這區別於監督學習和強化學習無監督學習。
無監督學習是密切相關的統計數據密度估計的問題。然而無監督學習還包括尋求,總結和解釋數據的主要特點等諸多技術。在無監督學習使用的許多方法是基於用於處理數據的數據挖掘方法。
非監督學習對應的是監督學習。
聚類(例如,混合模型,層次聚類),
隱馬爾可夫模型,
盲目的信號分離使用特徵提取的技術降維(例如,主成分分析,獨立分量分析,非負矩陣分解,奇異值分解)。
在神經網路模型,自組織映射(SOM)和自適應共振理論(藝術)是常用的無監督學習演算法。SOM是一個地形組織附近的位置在地圖上代表輸入有相似屬性。藝術模型允許集群的數量隨問題規模和讓用戶控制之間的相似程度相同的集群成員通過一個用戶定義的常數稱為警戒參數。藝術網路也用於許多模式識別任務,如自動目標識別和地震信號處理。藝術的第一個版本是"ART1",由木匠和Grossberg(1988)。
❿ 機器學習的分類
機器學習的分類主要有學習策略、學習方法、數據形式。學習目標等。
從學習策略方面來看,如果比較嚴謹的講,那就是可分為兩種:
(1) 模擬人腦的機器學習
符號學習:模擬人腦的宏現心理級學習過程,以認知心理學原理為基礎,以符號數據為輸入,以符號運算為方法,用推理過程在圖或狀態空間中搜索,學習的目標為概念或規則等。符號學習的典型方法有記憶學習、示例學習、演繹學習.類比學習、解釋學習等。
神經網路學習(或連接學習):模擬人腦的微觀生理級學習過程,以腦和神經科學原理為基礎,以人工神經網路為函數結構模型,以數值數據為輸人,以數值運算為方法,用迭代過程在系數向量空間中搜索,學習的目標為函數。典型的連接學習有權值修正學習、拓撲結構學習。
(2) 直接採用數學方法的機器學習
主要有統計機器學習。
統計機器學習是基於對數據的初步認識以及學習目的的分析,選擇合適的數學模型,擬定超參數,並輸入樣本數據,依據一定的策略,運用合適的學習演算法對模型進行訓練,最後運用訓練好的模型對數據進行分析預測。
統計機器學習三個要素:
模型(model):模型在未進行訓練前,其可能的參數是多個甚至無窮的,故可能的模型也是多個甚至無窮的,這些模型構成的集合就是假設空間。
策略(strategy):即從假設空間中挑選出參數最優的模型的准則。模型的分類或預測結果與實際情況的誤差(損失函數)越小,模型就越好。那麼策略就是誤差最小。
演算法(algorithm):即從假設空間中挑選模型的方法(等同於求解最佳的模型參數)。機器學習的參數求解通常都會轉化為最優化問題,故學習演算法通常是最優化演算法,例如最速梯度下降法、牛頓法以及擬牛頓法等。
如果從學習方法方面來看的話,主要是歸納學習和演繹學習以及類比學習、分析學習等。
如果是從學習方式方面來看,主要有三種,為監督學習、無監督學習、 強化學習。
當從數據形式上來看的話,為 結構化學習、非結構化學習、
還可從學習目標方面來看,為 概念學習、規則學習、函數學習、類別學習、貝葉斯網路學習。