① 圓的面積公式是什麼
圓
半圓如果求面積方法也是一樣的,直接用整圓面積除以2就可以了。
半圓的周長稍微不同,用整圓的周長除以2之後,要加上直徑的數值才行。
以上就是關於圓的面積及相關知識的介紹,希望對你有用。
② 圓的面積計算公式是怎樣的
圓面積計算公式:S=πr²或者啊 S=π(d/2)²。
圓面積是指圓形所佔的平面空間大小,常用S表示。圓是一種規則的平面幾何圖形,其計算方法有很多種,比較常見的是開普勒的求解方法,卡瓦利里的求解方法等。
在卡瓦利里的觀點上拓展,也可以將曲線看做不可分量。所以圓面積近似於無數個圓周長曲線的拼接,這些圓的半徑是從0到r的連續點,可以看作長度為r的直線,這些圓的半徑之和可以看作直角邊長為r的直角等邊三角形,故可得公式:
(2)圓的面積計算方法是怎麼得出來的擴展閱讀
圓的性質:
1、如果兩圓相交,那麼連接兩圓圓心的線段(直線也可)垂直平分公共弦。
2、弦切角的度數等於它所夾的弧的度數的一半。
3、圓內角的度數等於這個角所對的弧的度數之和的一半。
4、圓外角的度數等於這個角所截兩段弧的度數之差的一半。
5、周長相等,圓面積比正方形、長方形、三角形的面積大。
③ 圓的面積是怎麼樣推算出來的
數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。
劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次方程的解法等。
據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。
唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。
算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。
中國古代數學的繁榮
960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。
從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。
從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。
把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的內插公式。
用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。
從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。
朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。
勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個容圓公式,大大豐富了中國古代幾何學的內容。
已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。
中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元代。
宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑是促進數學發展的重要因素。
中西方數學的融合
中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考試制度。在這種情況下,除珠算外,數學發展逐漸衰落。
16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。
從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭必需用品列入一般的木器傢具手冊中。
隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大位的著作在國內外流傳很廣,影響很大。
1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同時介紹進來。
在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。
其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有這些,在當時歷法工作中都是隨譯隨用的。
1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。
清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現了生機。年希堯的《視學》是中國第一部介紹西方透視學的著作。
清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。
綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。
雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主的乾嘉學派。
隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨立得到的。
與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹西方天文數學的傳教士41人。這部著作全由「掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一手的原始資料,在學術界頗有影響。
1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展「洋務運動」,也主張介紹和學習西方數學,組織翻譯了一批近代數學著作。
其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。
《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。
在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思想的研究成果。
由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的研究才真正開始。
中國古代數學家——劉徽
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
《九章算術》約成書於東漢之初,共有246個問題的解法.在許多方面:如解聯立方程,分數四則運算,正負數運算,幾何圖形的體積面積計算等,都屬於世界先進之列,但因解法比較原始,缺乏必要的證明,而劉徽則對此均作了補充證明.在這些證明中,顯示了他在多方面的創造性的貢獻.他是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根.在代數方面,他正確地提出了正負數的概念及其加減運算的法則;改進了線性方程組的解法.在幾何方面,提出了"割圓術",即將圓周用內接或外切正多邊形窮竭的一種求圓面積和圓周長的方法.他利用割圓術科學地求出了圓周率π=3.14的結果.劉徽在割圓術中提出的"割之彌細,所失彌少,割之又割以至於不可割,則與圓合體而無所失矣",這可視為中國古代極限觀念的佳作.
《海島算經》一書中, 劉徽精心選編了九個測量問題,這些題目的創造性、復雜性和富有代表性,都在當時為西方所矚目.
劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是我國最早明確主張用邏輯推理的方式來論證數學命題的人.
劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富.
中國古代數學家——祖沖之
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取22/7為約率,取355/133為密率,其中355/133取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
④ 圓的面積怎麼算為什麼
圓的面積公式為:S=πr²,S=π(d/2)²,(d為直徑,r為半徑,π是圓周率,通常取3.14),圓面積公式的是由古代數學家不斷推導出來的。
我國古代的數學家祖沖之,從圓內接正六邊形入手,讓邊數成倍增加,用圓內接正多邊形的面積去逼近圓面積。
古希臘的數學家,從圓內接正多邊形和外切正多邊形同時入手,不斷增加它們的邊數,從里外兩個方面去逼近圓面積。
古印度的數學家,採用類似切西瓜的辦法,把圓切成許多小瓣,再把這些小瓣對接成一個長方形,用長方形的面積去代替圓面積。
16世紀的德國天文學家開普勒,把圓分割成許多小扇形;不同的是,他一開始就把圓分成無窮多個小扇形。圓面積等於無窮多個小扇形面積的和,所以在最後一個式子中,各段小弧相加就是圓的周長2πR,所以有S=πr²。
與圓相關的公式:
1、半圓的面積:S半圓=(πr^2)/2。(r為半徑)。
2、圓環面積:S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)。
3、圓的周長:C=2πr或c=πd。(d為直徑,r為半徑)。
4、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。
5、扇形弧長L=圓心角(弧度制)×R= nπR/180(θ為圓心角)(R為扇形半徑)
6、扇形面積S=nπ R²/360=LR/2(L為扇形的弧長)
7、圓錐底面半徑 r=nR/360(r為底面半徑)(n為圓心角)
於無窮多個小扇形面積的和,所以在最後一個式子中,各段小弧相加就是圓的周長2πR,所以有S=πr²。
⑤ 圓的面積怎麼求
圓的面積公式為:S=πr²。其中S表示圓的面積;π為圓周率,它是一個無限不循環小數,一般無特殊要求的情況下,計算中π≈3.14;r是圓的半徑。
如,一個圓的半徑為2厘米,那麼這個圓的面積則為3.14乘以2的平方,經計算,該圓的面積為12.56平方厘米。
圓周率:
一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比值。它圓周率π也等於圓形之面積與半徑平方之比值。
第一個用科學方法尋求圓周率數值的人是阿基米德,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形,得出π≈根號10(約為3.14)
以上內容參考:網路-圓周率
⑥ 圓的面積公式是什麼
S=π×(r^2)
圓的半徑:r
直徑:d
圓周率:π(數值為3.1415926至3.1415927之間……無限不循環小數),通常採用3.14作為π的數值
圓面積:S=πr²; S=π(d/2)²
半圓的面積:S半圓=(πr^2;)/2
圓環面積: S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)
圓的周長:C=2πr或c=πd
半圓的周長:d+(πd)/2或者d+πr
圓面積公式
把圓平均分成若干份,可以拼成一個近似的長方形。長方形的寬就等於圓的半徑(r),長方形的長就是圓周長(C)的一半。長方形的面積是ab,那圓的面積就是:圓的半徑(r)乘以二分之一周長C,S=r*C/2=r*πr。
圓周長公式
圓周長(C):圓的直徑(d),那圓的周長(C)除以圓的直徑(d)等於π,那利用乘法的意義,就等於 π乘以圓的直徑(d)等於圓的周長(C),C=πd。而同圓的直徑(d)是圓的半徑(r)的兩倍,所以就圓的周長(C)等於2乘以π乘以圓的半徑(r),C=2πr。
(6)圓的面積計算方法是怎麼得出來的擴展閱讀
約翰尼斯·開普勒是德國天文學家,他發現了行星運動的三大定律,三大定律可分別描述為:所有行星分別是在大小不同的橢圓軌道上運行;在同樣的時間里行星向徑在軌道平面上所掃過的面積相等;行星公轉周期的平方與它同太陽距離的立方成正比。
這三大定律最終使他贏得了"天空立法者"的美名。為哥白尼的日心說提供了最可靠的證據,同時他對光學、數學也做出了重要的貢獻,他是現代實驗光學的奠基人。
開普勒當過數學老師,他對求面積的問題非常感興趣,曾進行過深入的研究。他想,古代數學家用分割的方法去求圓面積,所得到的結果都是近似值。
為了提高近似程度,他們不斷地增加分割的次數。但是,不管分割多少次,幾千幾萬次,只要是有限次,所求出來的總是圓面積的近似值。要想求出圓面積的精確值,必須分割無窮多次,把圓分成無窮多等分才行。
開普勒也仿照切西瓜的方法,把圓分割成許多小扇形;不同的是,他一開始就把圓分成無窮多個小扇形。 圓面積等於無窮多個小扇形面積的和,所以 在最後一個式子中,各段小弧相加就是圓的周長2πR,所以有 這就是我們所熟悉的圓面積公式。
開普勒運用無窮分割法,求出了許多圖形的面積。1615年,他將自己創造的這種求圓面積的新方法,發表在《葡萄酒桶的立體幾何》一書中。
開普勒大膽地把圓分割成無窮多個小扇形,並果敢地斷言:無窮小的扇形面積,和它對應的無窮小的三角形面積相等。他在前人求圓面積的基礎上,向前邁出了重要的一步。
《葡萄酒桶的立體幾何》一書,很快在歐洲流傳開了。數學家們高度評價開普勒的工作,稱贊這本書是人們創造求圓面積和體積新方法的靈感源泉。
參考資料:圓面積的網路
⑦ 圓的面積怎麼算
圓的面積公式為:S=πr²,S=π(d/2)²
d為直徑,r為半徑,π是圓周率,通常取3.14。
R是扇形半徑,n是弧所對圓心角度數,π是圓周率,L是扇形對應的弧長。
也可以用扇形所在圓的面積除以360再乘以扇形圓心角的角度n,如下:
(L為弧長,R為扇形半徑)
推導過程:S=πr²×L/2πr=LR/2
(L=│α│·R)
(7)圓的面積計算方法是怎麼得出來的擴展閱讀:
圓形一周的長度,就是圓的周長。能夠重合的兩個圓叫等圓,等圓有無數條對稱軸。圓是一個正n邊形(n為無限大的正整數),邊長無限接近0但永遠無法等於0。
大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。
⑧ 說一說,圓的面積計算公式是怎樣得來的
圓的面積計算公式公式推導:
圓周長(c):圓的直徑(D),那圓的周長(c)除以圓的直徑(D)等於π,那利用乘法的意義,就等於 π乘圓的直徑(D)等於圓的周長(C),C=πd。而同圓的直徑(D)是圓的半徑(r)的兩倍,所以就圓的周長(c)等於2乘以π乘以圓的半徑(r),C=2πr。
把圓平均分成若干份,可以拼成一個近似的長方形。長方形的寬就等於圓的半徑(r),長方形的長就是圓周長(C)的一半。長方形的面積是ab,那圓的面積就是:圓的半徑(r)的平方乘以π,
⑨ 圓的面積公式是怎樣推導出來的
因為「化圓為方」時「圓面積是它外切正方形面積的九分之七」,所以"圓面積等於直徑3分之1平方的7倍"。圓的面積公式: s=7(d/3)²。
而開普勒或卡瓦利里的求解方法是因為人們在沒有發現"圓面積等於直徑d的3分之1平方的7倍"之前,一直都在藉助近似、接近或相當於圓面積的正6x2ⁿ邊形面積公式πR²或πr²進行計算。所以求得的結果也是近似、接近或相當於就是不等於圓的面積s。