『壹』 88×125的簡便運算怎麼寫四年級
88×125的簡便運算如下:
88×125
=(80+8)×125
=80×125+8×125
=10000+1000
=11000
解析:首先將88拆分成80+8,然後分別和125相乘得出的積,最後將積相加即可。運用的是乘法分配率。
簡便運算的相關定律
1、乘法分配律簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘。或先把後兩個數相乘,再和第一個數相乘,積不變。
『貳』 125×88簡便計算
1、88×125
=11×8×125(88拆分成11乘以8)
=11×(8×125)(利用括弧將8和125相乘)
=11×1000
=11000
2、88×125
=(80+8)×125(將88拆分成80+8)
=80×125+8×125(兩個數與同一個數相乘,等於把兩個加數分別同這個數相乘)
=10000+1000(把兩個積加起來)
=11000(結果與不簡算時得的結果相同。)
簡便運算的注意事項:
在進行簡便運算,應注意運算符號(乘除和加減)和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。
簡便運算的相關定律
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
4、減法的性質:一個數連續減去幾個數等於一個數減去這幾個數的和。
字母表示:a-b-b= a-(b+c)
5、除法的性質:一個數連續除以幾個數(0除外)等於一個數除以這幾個數的積。
字母表示:a÷b÷c=a÷(b×c)
6、商不變的規律
概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
『叄』 88X125簡便運算
88×125的簡便運算有兩種:
一、88×125
=125×(8×11)
=125×8×11
=1000×11
=11000
二、88×125
=125×(80+8)
=125×80+125×8
=10000+1000
=11000
解題分析:通過觀察發現兩個數相乘,其中被乘數88中都是8的倍數,因為乘數125是與8是簡便計算的搭配,所以考慮將被乘數88拆成8的倍數或者是8的倍數的和,第一種是直接拆成8和11的乘積然後利用乘法結合律的方法來讓其中的8與125進行相乘所得1000,然後與11相乘就是最終的結果11000 ,第二種是利用乘法分配律進行拆分計算的。
運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
簡便計算中最常用的方法是乘法分配律。ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。
『肆』 88×125的簡便計算,怎麼算
1、88×125
=11×8×125(88拆分成11乘以8)
=11×(8×125)(利用括弧將8和125相乘)
=11×1000
=11000
2、88×125
=(80+8)×125(將88拆分成80+8)
=80×125+8×125(兩個數與同一個數相乘,等於把兩個加數分別同這個數相乘)
=10000+1000(把兩個積加起來)
=11000(結果與不簡算時得的結果相同。)
簡便運算的注意事項:
在進行簡便運算,應注意運算符號(乘除和加減)和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。
簡便運算的相關定律
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
4、減法的性質:一個數連續減去幾個數等於一個數減去這幾個數的和。
字母表示:a-b-b= a-(b+c)
5、除法的性質:一個數連續除以幾個數(0除外)等於一個數除以這幾個數的積。
字母表示:a÷b÷c=a÷(b×c)
6、商不變的規律
概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
『伍』 125x88怎樣簡便就怎樣算
125x88簡便運算過程如下:
125x88
=125x800+125x8
=10000+1000
=11000
所以125x88簡便運算最後的結果是11000。
解題思路:不能進行簡便運算的按順序計算,簡便運算核心是運用加法和乘法各種定律進行計算,計算出整數部分方便後續計算的過程。
簡便計算中最常用的方法是乘法分配律。
乘法分配律指的是ax(b+c)=axb+axc其中a、b、c是任意實數。
相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。
『陸』 125×88的簡便方法計算
巧算步驟過程解析125×88
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
125×88
=125×8+125×80
=1000+10000
=11000
(6)12582的簡便運算方法四年級擴展閱讀->豎式計算:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:8×125=1000
步驟二:8×125=10000
根據以上計算結果相加為11000
存疑請追問,滿意請採納
『柒』 88×125的簡便運算怎麼寫四年級
88×125的簡便運算如下:
88×125
=(80+8)×125(將88拆分成80+8)
=80×125+8×125(兩個數與同一個數相乘,等於把兩個加數分別同這個數相乘)
=10000+1000(把兩個積加起來)
=11000(結果與不簡算時得的結果相同。)
簡便運算的相關定律
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
『捌』 四年級下冊的簡便運算如何算125×88等於多少
因為88=11×8,所以原式等於125×11×8運用乘法結合律改變運算就有11×(125×8)=11000
『玖』 數學125✘8的簡便運算
可以將125分成100+25,先計算100乘8=800,然後計算二十五乘8等於200,將兩次乘法所得的結果相加就可以得到答案。800+200等於1000。
『拾』 125x88用簡便方法計算
125x88用簡便方法計算的結果等於11000。
解:125x88
=(25x5)x(4x2x11)
=(25x4)x(5x2)x11
=100x10x11
=11000
即125x88的結果等於11000。
(10)12582的簡便運算方法四年級擴展閱讀:
1、加法結合律
加法結合律為(a+b)+c=a+(b+c)。
例如,8+1+9=8+(1+9)=8+10=18
2、加法交換律
a+c=c+a。
例如,8+5=5+8=13。
3、乘法結合律
(axb)xc=ax(bxc)。
例如,3x2.5x4=3x(2.5x4)=3x10=30。
4、乘法分配律
(a+b)xc=axc+bxc。
參考資料來源:網路-簡便計算