導航:首頁 > 知識科普 > 簡便方法符號怎麼變

簡便方法符號怎麼變

發布時間:2022-07-23 03:02:11

Ⅰ 如果括弧外面和括弧裡面的運算符號一樣用簡便方法時運算符號要改變嗎

如果括弧外面是減號,括弧裡面的運算符號加號變減號,減號變加號。

Ⅱ 分數混合運算簡便方法符號怎麼

分數加減混合運算的運算順序和整數混合運算的順序是一樣的。
混合運算的法則
實際就是其運算的順序和符號順序應該是有括弧的先算括弧內的,沒有括弧的按先乘方再乘除,最後算加減。

Ⅲ 乘除混合運算怎麼做,尤其是有各種括弧,怎麼變符號

先乘除,再加減,有括弧先算括弧,括弧裡面也是先乘除,再加減:僅乘除或加減先後不分;
2×3÷6=6÷6=1或2×1/2=1 2+3-5=5-5=0或者2-2=0
2+2×3=2+6=8 2+2÷2=2+1=3
2×(2+3)=2×5=10 2÷(3-2)=2÷1=2
2+5×(5+5÷1)=2+5×(5+1)=2+5×6=2+30=32
加減號開括弧符號變換:正正得正(++得+);負負得正(--得+);
正負或負正都得負(-+或+-都得-)
1+1=2 (++得+) 1-(-1)=1+1=2(--得+) 1-1=0(+-都得-)
-1+1=0(-+得-)
5-(3+5)=5-3-5 -+得- 5-(5-3)=5-5+3(-+得-,--得+)
值得注意的是符號的變換字母代替的式子適用:、
a-(-b)=a+b (--得+)

Ⅳ 簡便演算法怎麼算

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。簡便計算中最常用的方法是乘法分配律。

乘法結合律也是比較常用的方法,三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。在進行簡便運算時,應注意運算符號和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。

Ⅳ 五年級簡便運算的方法

簡便運算一般有5種方法:
1. 湊整法:通過加、減一個數將其湊成整十、整百、整千的數。
2. 交置法:也就是通常所說的結合律,幾個數相加、相減,將其位置交換一下,湊成整十、整百、整千的數。
3. 去括弧法:有時在計算含有括弧的算式時,通過去除括弧,可使運算簡便,但要注意的是去括弧後的符號變化。
4、運用運算定律
加法交換律:a+b=b+a
加法結合律: a+b+c=a+(b+c)
乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
5、減法性質: a-b-c=a-c-b=a-(b+c)
除法性質:a÷b÷c=a÷c÷b=a÷(b×c)
A、當一個計算題只有同一級運算(只有乘除或只有加減)又沒有括弧時,我們可以隨意「帶符號搬家」
12.06+5.07+2.94 30.34+9.76-10.34
25×7×4 34÷4÷1.7
102×7.3÷5.1 41.06-19.72-20.28
7.2+2.2×1.2 2.6÷1.3+8.7
B、當同級運算需加括弧或去括弧時,即加或去括弧時,括弧前是加或乘號,可以直接加或去括弧,而括弧前是減或除號,括弧里要變號。
700÷14÷5 18.6÷2.5÷0.4
1.06×2.5×4 5.68+(5.39+4.32)
19.68-(2.97+9.68) 1.25×(8÷0.5)
0.25×(4×1.2) 1.25×(213×0.8)

乘法分配律的兩種典型類型
A、括弧里是加或減運算,與另一個數相乘,注意分配。
0.4×(0.25+2.5) (12+1.2) ×0.2 (40-1.25)×0.8
B、注意相同因數的提取。
0.92×1.41+0.92×8.59 7.8×9.9+9.9×2.2
1.3×11.6-1.6×1.3 11.9×9.9+1.19×1

Ⅵ 想一想,簡便方法計算中,符號的變化是怎樣的

交換律,結合律,分配律

Ⅶ 簡便運算的技巧

簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。

主要用三種方法:加減湊整、分組湊整、提公因數法。

他們使用的都是數學計算中的拆分湊整思想。

主要步驟:

①遇見復雜的計算式時,先觀察有沒有可能湊整;

②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法

1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;

2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法

在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】

加法結合律:a+b+c=a+(b+c)=(a+b)+c;

減法的性質:a-b-c=a-(b+c)。
提公因數法

使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;

如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。

連續加,結對子。連續乘,找朋友。

連續減,減去和。連續除,除以積。

減去和,可連減。除以積,可連除。

乘和差,分別乘。積加減,莫慌張,

同因數,提出來,異因數,括弧放。

同級算,可交換。特殊數,巧拆分。

合理算,我能行。

1方法一:帶符號搬家法

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

a+b+c=a+c+b

a+b-c=a-c+b

a-b+c=a+c-b

a-b-c=a-c-b

例如:

a×b×c=a×c×b

a÷b÷c=a÷c÷b

a×b÷c=a÷c×b

a÷b×c=a×c÷b)

例如:

2方法二:結合律法

(一)加括弧法

1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。

2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。

(二)去括弧法

1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。

2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。

3方法三:乘法分配律法

1.分配法

括弧里是加或減運算,與另一個數相乘,注意分配

例:8×(12.5+125)

=8×12.5+8×125

=100+1000

=1100

2.提取公因式

注意相同因數的提取。

例:9×8+9×2

=9×(8+2)

=9×10

=90

3.注意構造,讓算式滿足乘法分配律的條件。

例:8×99

=8×(100-1)

=8×100-8×1

=800-8

=792

4方法四:湊整法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。

例:9999+999+99+9

=(10000-1)+(1000-1)+(100-1)+(10-1)

=(10000+1000+100+10)-4

=11110-4

=11106

5方法五:拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。

例:32×125×25

=(4×8)×125×25

=(4×25)×(8×125)

=100×1000

=100000

6方法六:巧變除為乘

除以一個數等於乘以這個數的倒數

7方法六:裂項法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。

遇到裂項的計算題時,需注意:

1.連續性

2.等差性

計算方法:頭減尾,除公差。

8方法六:找朋友法

例題:

例1:

283+52+117+148

=(283+117)+(52+48)

(運用加法交換律和結合律)。

減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。

例2:

657-263-257

=657-257-263

=400-263

(運用減法性質,相當加法交換律。「帶符號搬家」)

例3:

195-(95+24)

=195-95-24

=100-24

(運用減法性質)

例4:

150-(100-42)

=150-100+42

(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)

例5:

(0.75+125)x8

=0.75x8+125x8=6+1000

. (運用乘法分配律))

例6:

( 125-0.25)x8

=125x8-0.25x8

=1000-2

(同上)

例7:

(1.125-0.75)÷0.25

=1.125÷0.25-0.75÷0.25

=4.5-3=1.5。

( 運用除法性質)

例8:

(450+81)÷9

=450÷9+81÷9

=50+9=59.

(同上,相當乘法分配律)

例9:

375÷(125÷0.5)

=375÷125x0.5=3x0.5=1.5.

(運用除法性質)

例10:

4.2÷(0.6x0.35)

=4.2÷0.6÷0.35

=7÷0.35=20

(運用除法性質)

例11:

12x125x0.25x8

=(125x8)x(12x0.25)

=1000x3=3000.

(運用乘法交換律和結合律)

例12:

(175+45+55+27)-75

=175-75+(45+55)+27

=100+100+27=227.

(運用加法性質和結合律)

閱讀全文

與簡便方法符號怎麼變相關的資料

熱點內容
18種科學鍛煉方法 瀏覽:433
如何克服心理的方式方法 瀏覽:812
物理研究方法一共有幾種 瀏覽:387
用什麼方法可以把手機變成藍牙 瀏覽:484
想把真皮斑淡化有什麼土方法 瀏覽:514
恩蘋果手機簡訊歸類處理方法 瀏覽:942
工程圖紙問題及解決方法 瀏覽:542
s6藍牙耳機使用方法 瀏覽:970
訓犬的方法如何訓練馬犬 瀏覽:97
一個人能快速學會下腰的方法 瀏覽:778
籃球比賽技巧與方法視頻 瀏覽:858
循環水真空泵使用方法 瀏覽:568
vivo屏幕旋轉按鈕在哪裡設置方法 瀏覽:450
結核桿菌快速檢測方法有 瀏覽:659
科目二五項操作技巧方法詳細初學 瀏覽:202
關節炎有什麼土方法 瀏覽:228
散稱商品正確的書寫方法圖片 瀏覽:833
細菌無性繁殖計算方法 瀏覽:291
t恤衫改造方法視頻 瀏覽:840
淘寶常用電腦設置方法 瀏覽:368