129+89
=(130-1)+(90-1)
=130-1+90-1
=(130+90)-(1+1)
=220-2
=218
⑵ 用簡便方法計算,怎麼寫
解:採用分配律,
原式=(71+22+7)x23
=(93+7)x23
=100x23
=2300
⑶ 小學四年級數學簡便計算方法技巧
小學四年級數學簡便計算例子演示19×24+19×46
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
19×24+19×46
=19×(24+46)
=19×70
=1330
(3)154816用簡便方法怎麼算擴展閱讀→豎式計算-計算結果:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:9×70=630
步驟二:1×70=700
根據以上計算結果相加為1330
存疑請追問,滿意請採納
⑷ 用簡便方法計算,怎麼做
1、=25*(4-4)=0
2、=100÷5+2÷5-50÷5=20+0.4-10=10.4
3、=72÷12=6
4、=243+4=247
5、=81×7=567
6、=52+24=76
7、=550+56=616
8、=100-84=16
⑸ 用簡便方法計算怎樣做
乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
性質
編輯
減法1
a-b-c=a-(b+c)
減法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
⑹ 小學四年級簡便計算題大全
一定要把括弧外的數分別乘括弧里的兩個數,再把積相加或相減。
(8+40)×25 125×(8+80) 48×(5+100) 24×(2+10) 75×(1000— 2) 15×(40— 8)
例如:
(1)2.64×51.9+264×0.481
=264×0.519+264×0.481
=264×(0.519+0.481)
=264×1
=264
(2)9.16×1.53-0.053×91.6
=9.16×1.53-0.53×9.16
=9.16×(1.53-0.53)
=9.16×1
=9.16
簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。
⑺ 2➕4➕6➕8……➕100用簡便方法計算
簡便計算的方法有:
1、原式=(2+98)+(4+96)+(6+94)+……+(48+52)+50+100=100+100+100+……+100+50+100=100x24+50+100=2400+50+100=2550
2、利用等差數列求和公式。
則原式=(2+100)x50÷2=102x50÷2=5100÷2=2550。
(7)154816用簡便方法怎麼算擴展閱讀:
1、等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通項公式為:an=a1+(n-1)*d。首項a1=1,公差d=2。注意:以上n均屬於正整數。
2、在有窮等差數列中,與首末兩項距離相等的兩項和相等。並且等於首末兩項之和;特別的,若項數為奇數,還等於中間項的2倍。即
。
⑻ 怎麼用簡便方法計算小學四年級
⑼ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑽ 用簡便計算怎麼計算
回復:
常用方法:利用`加法結合律'~~~乘法交換律~~~合並同類項~~~先乗除,後加減…