Ⅰ 大數據怎麼使用
以下是關於如何成功使用大數據的一些方法。
1.敏捷
敏捷地掌握新興技術的最新進展。顧客的需求往往在變化,因此,技術必須靈活適應客戶的苛刻需求。如果想成功,應該調整收集的數據並處理,以滿足客戶的需求。
2.實時操作
實時操作業務,以了解客戶遇到的各種問題。最好的方法是使用實時數據。因此,要了解業務的缺點,並實施適當的步驟來促進最佳的用戶體驗和更高的生產力。
3.多種設備
使用不同的設備來收集有關客戶的相關信息,包括智能手機,筆記本電腦和平板電腦,因為客戶會使用各種設備訪問公司的產品。
4.使用所有的數據
全面使用數據來捕獲匯總數據中的重要見解。從客戶的經驗和行為中收集的數據對於提高產品品牌和業務生產力非常重要。
5.捕獲所有信息
在數據採集過程中,要掌握所有客戶的信息,深入了解客戶,避免盲點。還應該收集可能影響到客戶的信息,從而提升品牌知名度
Ⅱ 該如何用好大數據
該如何用好大數據
近一兩年來,大數據是一個被頻繁提及的詞彙。不管是近幾天麻涌舉行的五礦物流麻涌基地發布會上,還是在智博會配套活動中國(東莞)雲計算高峰論壇上,越來越多的企業和研究者對大數據產生了非常濃厚的興趣。越來越多的東莞企業表示想要做好大數據運營,但是,大數據要用好並不容易。
大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據技術,是指從各種各樣類型的數據中,快速獲得有價值信息的能力。
大數據聽起來似乎很高深,但其實已經滲透到人們生活的方方面面。例如一個消費者在淘寶上搜索了泳鏡,接下來他在打開許多網站時都會看到游泳衣、游泳圈等相關產品的廣告。這,就是當前大數據營銷的一個典型應用場景。
前不久,陳國良和石鍾慈兩名專門研究雲計算和大數據的工程院院士在東莞進行了一次大數據的知識普及講座。
據陳國良院士介紹,2012年3月,美國總統奧巴馬在一次研究計劃上提出了大數據概念。「大數據」的說法由此被全球范圍採用,而在此前,國內的研究者一般稱其為天文數據、海量數據或者巨量數據。不管是物聯網設備的感測器、科學研究還是人們的日常生活,都會產生大量的數據。而善於用好大數據技術,則可以從這些數據中挖到「黃金」。
不過,陳國良也表示,大數據的結果很有價值,但千萬不能陷入大數據獨裁主義,人,才是大數據的第一要素。當然,要求所有企業都具有大數據分析能力。
陳國良所說的大數據分析能力,便是大數據的組成部分。隨著大數據的應用日漸廣泛,影響日漸深遠,大數據思維的重要性也日漸顯著。
大數據思維,就是能夠正確利用好大數據的思維方式。大數據並不是指任何決策都參考數據,也不是要求所有問題都足夠精準,更不是花巨資打造大數據系統或平台,而是在應該讓大數據出場的地方把大數據用好。
要用好大數據,首先應該採集大數據。與傳統的調查問卷等搜集信息數據的方式不同,互聯網時代的大數據採集是「無限的、無意識的、非結構化的」數據採集。各種紛繁復雜的行為數據以行為日誌的形式上傳到伺服器中,隨用隨取。此外,分析數據使用了專門的數據模型。最值得一提的是,大數據可以根據營銷、決策等特定問題,從資料庫中調取海量數據進行挖掘以完成數據驗證,甚至可以得出與常識或經驗判斷完全相異的結論出來。
不少業內人士表示,很多時候,大數據的價值正是體現在這樣與直觀判斷大相徑庭的地方。對此,陳國良也表示,「大數據分析結果有時候沒有理論支撐甚至無法證明,不過分析仍然有效,技術仍然在發展!」陳國良還為東莞有意進行大數據挖掘的企業支招說,大數據的獲取,不能依靠隨機采樣,也不能強求精確性,甚至分析結果也難以解釋其所以然,不過能用就好,以後可以慢慢再弄清其中的科學原因。
業內人士分析說,大數據的應用領域正在逐步增加。一方面,東莞企業可以通過大數據對用戶行為與特徵作出分析。通過大量數據可以分析出用戶的喜好與購買習慣,甚至做到「比用戶更了解用戶自己」。此外,通過大數據可以支撐精準營銷信息推送。讓最精確的信息傳遞到正好匹配的客戶手中。
另外,通過大數據可以讓營銷活動能夠與用戶能夠產生「會心一擊」的效果,這種基於海量數據的挖掘和匹配實現的精準信息,能夠讓企業有效地取得客戶的歡心。
在陳國良眼中,雲計算、物聯網以及大數據是三位一體的,伴隨著萬物互聯的趨勢以及雲計算逐步變得更加方便易得,價格低廉,大數據的應用場景以及應用的經濟類型也都將得到進一步的加強。
Ⅲ 如何運用大數據
我們如何使用大數據?
第一點,明確數據分析的目的
首先,您必須知道手中的數據要怎麼處理,這意味著您需要清楚需求以及要從數據中獲取什麼。讓我們以產品經理為例。當許多產品經理設計自己的產品時,他們可能會花費大量時間來設計產品,但是他們忽略了該產品是否可以成功。這很難滿足客戶的需求。因此,如果要最大化自己的數據的價值,則必須事先考慮要執行的操作。
第二點,必須擴大數據收集方式
關於數據收集,通常有四種方法。它們是從外部行業數據分析報告(例如iResearch)獲得的;積極從社區論壇(如AppStore,客戶服務反饋和微博)收集用戶反饋;參加問卷調查設計和用戶訪談等調查,收集並觀察用戶在使用產品時遇到的問題和感受的第一手數據;從記錄的用戶行為軌跡研究數據。
Ⅳ 常用的大數據分析方法
1. Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
5. Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
Ⅳ 大數據如何預測
大數據的本質是解決問題,大數據的核心價值就在於預測,而企業經營的核心也是基於預測而做出正確判斷。在談論大數據應用時,最常見的應用案例便是「預測股市」「預測流感」「預測消費者行為」等。
大數據預測則是基於大數據和預測模型去預測未來某件事情的概率。讓分析從「面向已經發生的過去」轉向「面向即將發生的未來」是大數據與傳統數據分析的最大不同。
大數據預測的邏輯基礎是,每一種非常規的變化事前一定有徵兆,每一件事情都有跡可循,如果找到了徵兆與變化之間的規律,就可以進行預測。大數據預測無法確定某件事情必然會發生,它更多是給出一個事件會發生的概率。
實驗的不斷反復、大數據的日漸積累讓人類不斷發現各種規律,從而能夠預測未來。利用大數據預測可能的災難,利用大數據分析癌症可能的引發原因並找出治療方法,都是未來能夠惠及人類的事業。
Ⅵ 如何運用大數據
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統
計
學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如
果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。 大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數
據處理: 自然語言處理(NLP,Natural Language
Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理
解也稱為計算語言學。一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析:
假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、
卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、
因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數
據挖掘: 分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity
grouping or association rules)、聚類(Clustering)、描述和可視化、Description and
Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大
數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的
數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除
此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時
有可能會有成千上萬的用戶
來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間
進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些
海量數據進行有效的分析,還是應該將這
些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使
用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統
計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通
的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於
MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與
前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數
據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於
統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並
且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
Ⅶ 如何利用大數據做出正確的判斷
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。[1]
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》[2] 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)、Veracity(真實性)。
未至科技數據中心解決方案是以組織價值鏈分析模型為理論指導,結合組織戰略規劃和面向對象的方法論,對組織信息化戰略進行規劃重造立足數據,以數據為基礎建立組織信息化標准,提供面向數據採集、處理、挖掘、分析、服務為組織提供一整套的基礎解決方案。未至數據中心解決方案採用了當前先進的大數據技術,基於Hadoop架構,利用HDFS、Hive、Impala等大數據技術架構組件和公司自有ETL工具等中間件產品,建立了組織內部高性能、高效率的信息資源大數據服務平台,實現組織內數億條以上數據的秒級實時查詢、更新、調用、分析等信息資源服務。未至數據中心解決方案將,為公安、教育、旅遊、住建等各行業業務數據中心、城市公共基礎資料庫平台、行業部門信息資源基礎資料庫建設和數據資源規劃、管理等業務提供了一體化的解決方案。
Ⅷ 如何利用大數據提高決策的正確性
大數據可以看到很多東西,比如:行業的走向、行業發展、區域經濟、人民生活水平、人民消費水平等,擁有這些數據,就可以很好的決策了。要是還是感覺困難,可以用大數據建模,這樣直接輸入參數,就能得到你想要的答案了。