1. 數據整理的好方法有哪些
1、整理數據的常用方法有:⑴歸納法: 可應用直方圖、分組法、層別法及統計解析法。⑵演繹法: 可應用要因分析圖、散布圖及相關回歸分析。⑶預防法: 通稱管制圖法,包括Pn管制圖、P管制圖、C管制圖、U管制圖、管制圖、X-Rs管制圖。
2、數據整理是對調查、觀察、實驗等研究活動中所搜集到的資料進行檢驗、歸類編碼和數字編碼的過程。它是數據統計分析的基礎。
3、整理數據的步驟:⑴原始數據之審核。⑵分類項目之確定。⑶施行歸類整理。⑷列表。⑸繪圖。
2. 數據處理的方法有哪些,有什麼優缺點
數據處理主要有四種分類方式
①根據處理設備的結構方式區分,有聯機處理方式和離線處理方式。
②根據數據處理時間的分配方式區分,有批處理方式、分時處理方式和實時處理方式。
③根據數據處理空間的分布方式區分,有集中式處理方式和分布處理方式。
④根據計算機中央處理器的工作方式區分,有單道作業處理方式、多道作業處理方式和互動式處理方式。
數據處理對數據(包括數值的和非數值的)進行分析和加工的技術過程。包括對各種原始數據的分析、整理、計算、編輯等的加工和處理。比數據分析含義廣。隨著計算機的日益普及,在計算機應用領域中,數值計算所佔比重很小,通過計算機數據處理進行信息管理已成為主要的應用。如測繪制圖管理、倉庫管理、財會管理、交通運輸管理,技術情報管理、辦公室自動化等。在地理數據方面既有大量自然環境數據(土地、水、氣候、生物等各類資源數據),也有大量社會經濟數據(人口、交通、工農業等),常要求進行綜合性數據處理。故需建立地理資料庫,系統地整理和存儲地理數據減少冗餘,發展數據處理軟體,充分利用資料庫技術進行數據管理和處理。
計算機數據處理主要包括8個方面。
①數據採集:採集所需的信息。
②數據轉換:把信息轉換成機器能夠接收的形式。
③數據分組:指定編碼,按有關信息進行有效的分組。
④數據組織:整理數據或用某些方法安排數據,以便進行處理。
⑤數據計算:進行各種算術和邏輯運算,以便得到進一步的信息。
⑥數據存儲:將原始數據或計算的結果保存起來,供以後使用。
⑦數據檢索:按用戶的要求找出有用的信息。
⑧數據排序:把數據按一定要求排成次序。
3. 數據整理的常用方式有哪些
用數據可視化圖表呀,用對應數據含義的圖表來結合呈現,效果翻倍呀,會使數據愈加生動的被展示,還不乏炫酷感,我最近挖掘到的一個免費可視化平台推薦給你,迪賽智慧數可視化互動平台。 可以去上網路看看。
4. 常見的收集數據的方法有什麼
1、調查法
調查方法一般分為普查和抽樣調查兩大類。
2、觀察法
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
3、文獻檢索
文獻檢索就是從浩繁的文獻中檢索出所需的信息的過程。文獻檢索分為手工檢索和計算機檢索。
按性質分為:
①定位的,如各種坐標數據;
②定性的,如表示事物屬性的數據(居民地、河流、道路等);
③定量的,反映事物數量特徵的數據,如長度、面積、體積等幾何量或重量、速度等物理量;
④定時的,反映事物時間特性的數據,如年、月、日、時、分、秒等。
按表現形式分為:
①數字數據,如各種統計或量測數據。數字數據在某個區間內是離散的值。
②模擬數據,由連續函數組成,是指在某個區間連續變化的物理量,又可以分為圖形數據(如點、線、面)、符號數據、文字數據和圖像數據等,如聲音的大小和溫度的變化等。
5. 數據分析中數據收集的方法有哪些
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
6. 收集數據的常用方法有哪些
統計數據收集方法:直接觀察法、采訪法(又分為面訪式、電話式、自填式)、通訊法、網路調查法、衛星遙感法。
1、直接觀察法
調查人員到現場對調查對象進行觀察、 計量和登記以取得資料的方法。調查人員對所觀察的事件或行為不加以控制或干涉,能夠在被調查者不察覺的情況下獲得資料。
2、采訪法
面訪式:個別深度訪談。
一次只有一名受訪者參加、針對特殊問題的調查。
適合於較隱秘的問題,如個人隱私問題;或較敏感的問題。
統計數據
是統計工作活動過程中所取得的反映國民經濟和社會現象的數字資料以及與之相聯系的其他資料的總稱。統計數據是對現象進行測量的結果。比如, 對經濟活動總量的測量可以得到國內生產總值(GDP)數據;對股票價格變動水平的測量可以得到股票價格指數的數據;對人口性別的測量可以得到男或女這樣的數據。
7. 數據採集的五種方法是什麼
一、 問卷調查
問卷的結構,指用於不同目的的訪題組之間以及用於同一項研究的不同問卷之間,題目的先後順序與分布情況。
設計問卷整體結構的步驟如下:首先,根據操作化的結果,將變數進行分類,明確自變數、因變數和控制變數,並列出清單;其次,針對每個變數,依據訪問形式設計訪題或訪題組;再次,整體謀劃訪題之間的關系和結構;最後,設計問卷的輔助內容。
二、訪談調查
訪談調查,是指通過訪員與受訪者之間的問答互動來搜集數據的調查方式,它被用於幾乎所有的調查活動中。訪談法具有一定的行為規范,從訪談的充分准備、順利進入、有效控制到訪談結束,每一環節都有一定的技巧。
三、觀察調查
觀察調查是另一種搜集數據的方法,它藉助觀察者的眼睛等感覺器官以及其他儀器設備來搜集研究數據。觀察前的准備、順利進入觀察場地、觀察的過程、觀察記錄、順利退出觀察等均是技巧性很強的環節。
四、文獻調查
第一,通過查找獲得文獻;第二,閱讀所獲得文獻;第三,按照研究問題的操作化指標對文獻進行標注、摘要、摘錄;最後,建立文獻調查的資料庫。
五、痕跡調查
大數據是指與社會行為相伴生、通過設備和網路匯集在一起,數據容量在PB級別且單個計算設備無法處理的數字化、非結構化的在線數據。它完整但並非系統地記錄了人類某些社會行為。
大數據研究同樣是為了把握事物之間的關系模式。社會調查與研究中,對大數據的調查更多的是從大數據中選擇數據,調查之前同樣需要將研究假設和變數操作化。
關於數據採集的五種方法是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
8. 數據收集的四種常見方式
數據收集的四種常見的方式包括問卷調查、查閱資料、實地考查、試驗,幾種方法各有各的又是和缺點,具體分析如下。
四是實驗。實驗設計數據是四種方法中最耗時間的一種,因為它是通過各種各樣的實驗來得到一個統一的方向,也就是說,在這個過程中,可能有無數次的失敗。但是實驗得到的數據是最准確的,而且可能會推動某個行業的進步。所以,實驗收集數據的優點是數據的准確性很高,而他的缺點就是未知性很大,不管實驗的周期還是實驗的結果都是不確定性的。
隨著科技的發展和大數據時代的到來,收集數據越來越容易,而大家也應該更注重於保護和利用數據。
9. 在我們生活中,都可以用哪些方法收集和整理數據呢
1、抽樣調查法。
抽樣調查法是指從研究對象的全部單位中抽取一部分單位進行考察和分析,並用這部分單位的數量特徵去推斷總體的數量特徵的一種調查方法。其中,被研究對象的全部單位稱為「總體」;
從總體中抽取出來,實際進行調查研究的那部分對象所構成的群體稱為「樣本」。在抽樣調查中,樣本數的確定是一個關鍵問題。
2、折線圖
折線圖和帶數據標記的折線圖 折線圖用於顯示隨時間或有序類別而變化的趨勢,可能顯示數據點以表示單個數據值,也可能不顯示這些數據點。在有很多數據點並且它們的顯示順序很重要時,折線圖尤其有用。
3、歸納法
歸納推理是一種由個別到一般的推理。由一定程度的關於個別事物的觀點過渡到范圍較大的觀點,由特殊具體的事例推導出一般原理、原則的解釋方法。
自然界和社會中的一般,都存在於個別、特殊之中,並通過個別而存在。一般都存在於具體的對象和現象之中,因此,只有通過認識個別,才能認識一般。
4、演繹法
演繹推理是由一般到特殊的推理方法。與「歸納法」相對。推論前提與結論之間的聯系是必然的,是一種確實性推理。
運用此法研究問題,首先要正確掌握作為指導思想或依據的一般原理、原則;其次要全面了解所要研究的課題、問題的實際情況和特殊性;然後才能推導出一般原理用於特定事物的結論。
(9)採集整理數據的方法有哪些擴展閱讀:
從商業角度來看,從前未知的統計分析模式或趨勢的發現為企業提供了非常有價值的洞察力。數據整理技術能夠為企業對未來的發展具有一定的預見性。數據整理技術可以分成3類:群集、分類和預測。
群集技術就是在無序的方式下集中信息。群集的一個例子就是對未知特點的群體商業客戶的分析,對這一例子輸入相關信息就可以很好的定義客戶的特點。
分類技術就是指定object,以確定集合。集合通常用上面的技術來形成,可以舉一個例子就是把客戶按照他們的收入水平分成特定的銷售群體。
預測技術就是對某些特定的對象和目錄輸入已知值,並且把這些值應用到另一個類似集合中以確定期望值或結果。比如,一組戴頭盔和肩章的人是足球隊的,那麼我們也認為另一組帶頭盔和肩章的人也是足球隊的。
10. 數據採集的方法有幾種
有以下三種:
1、調查法。
調查方法一般分為普查和抽樣調查兩大類。
2、觀察法。
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
3、文獻檢索。
文獻檢索就是從浩繁的文獻中檢索出所需的信息的過程。文獻檢索分為手工檢索和計算機檢索。
按性質分為:
①定位的,如各種坐標數據。
②定性的,如表示事物屬性的數據(居民地、河流、道路等)。
③定量的,反映事物數量特徵的數據,如長度、面積、體積等幾何量或重量、速度等物理量。
④定時的,反映事物時間特性的數據,如年、月、日、時、分、秒等。