導航:首頁 > 知識科普 > 口算題簡便的方法

口算題簡便的方法

發布時間:2022-07-18 02:55:51

Ⅰ 口算怎麼做簡單

看到過市場里買菜的阿姨嗎?不用計算器,無論買多少菜,都不需要用計算器。靠得是什麼?就是過硬的基本功,口算是基礎,怕也沒有用,這是為了你的將來做准備,你不可能總是用筆算,那樣你的時間就白白浪費了,在起跑線上你就輸了!所以,現在開始,就要加強這方面的訓練。繩鋸木斷,水滴石穿,你一旦掌握了,就會發現他並不恐懼,而且會和你很友好,數學,就是這樣奇妙無窮!

Ⅱ 計算口算題的簡便方法哪些

乘法中 因式中有2和5的先相乘
15×15(5+5=10 1=1)=1×(1+1)×100+5×5=225
37×33(3+7=10 3=3)=3×(3+1)×100+3×7=1221

Ⅲ 怎樣練習口算

1、口算練習要經常練口算練習一要天天練、課課練。
可以在每堂課開頭先安排2~3分鍾,口算20~30道題,日積月累才能形成學生的口算能力。二要視算、聽算結合練。視算有一定的直觀性,聽算在腦中反映題目與計算過程,兩者結合,手、腦、口、眼並用,提高口算能力。三要形式多樣變化練。要針對兒童特點,形式要多樣化,以此激發學生興趣,調動他們的積極性,並盡量讓全體學生參與。
2、加強算理教學。
從小學生的思維特點看,小學生數學要經過從具體到抽象,又從抽象到具體的過程。所以,要掌握口算方法,關鍵是理解算理。以新授9+3=?為例。學生通過操作小棒得出計算過程,並要求學生詳細說出計算過程:因為9加1得10,把小數3分成1和2,9加1得10,10再加2得12,這是具體題目9+3的計算。然後,經過一段時間的計算練習後,師生共同找出規律,讓學生形成一種簡縮思維:9加1得10,把小數3分出1剩2得12,這是從具體到抽象。最後,省略思維過程,直接得9+3=12,又從抽象到具體。這樣使學生理解和掌握計算方法,保證初級口算正確,通過以後的練習,就可以達到一定的熟練程度。
3、要注意練習設計的合理性。
低年級學生口算能力形成的心理過程,可以分為三個階段。第一階段是能正確地以表象為中介抽象地口算,能按照口算方法一步步清晰地思考。第二階段是降低表象的清晰度,提高口算的速度。第三階段是無意識口算,使口算自動化。 在第一階段,我們要注意控制練習量,放慢口算速度,確保口算準確以及口算思考過程的清晰度。主要採用口算口答形式,注意多讓學生講講口算的思考過程,使每個學生清晰地認識到算什麼,怎樣算以及為什麼這樣算,為進一步形成口算能力打下基礎。 在第二階段,我們適當增加口算練習量,逐步提出限時口算的要求,並針對錯誤率高的算式進行重點練習,主要採用口算筆答形式。 在第三階段,堅持每天2~3分鍾口算基本訓練,並根據遺忘規律,新舊知識結合練,鞏固已形成的口算能力。
4、口算訓練要突出重點,突破難點,對症下葯,並注重演算法指導。
在口算訓練中,應精先習題,有的放矢,邊計算邊讓學生說說如何計算出結果的?有沒有更簡便的方法?從口算題中你學會了什麼?這樣,既面對了全體學生,又照顧到中差生,起到了事半功倍之效。如:一年級學生對15-4=11與14-5=9兩種類型的題目容易混淆,放在一起對比練,並要求學生比較兩道題的不同;口算中經常出錯的題如6+3,7+2,4+3,8-2,9-7等反復練;9+4+1=?告訴學生先算9+1得10,再算10加4得14比較簡便;9乘幾的積就等於幾十減幾等等。
5、重視練習效果的反饋。
為了及時掌握口算情況和效果,我們應按照教學要求,擬定口算能力量化標准,利用這個量化標准及時反饋,及時調控。如明確告訴學生每次口算練習所要達到的標准,並及時鼓勵,及時糾錯,及時督促,不斷激發學生練習口算的動機,從而最大限度地調動全體學生口算練習的積極性與主動性。

Ⅳ 數學口算簡單的方法



用「湊十法」口算

根據式題的特徵,應用定律和性質使運算數據「湊整」:

1、加數「湊整」。

如14+5+6=?啟發學生:幾個數相加,如果有幾個數相加能湊成整十的數,可以調換加數的位置,把幾個數相加。

2、運用減法性質「湊整」。

如50-13-7,啟發學生說出思考過程,說出幾種口算方法並通過比較,讓學生總結出:從一個數里連續減去幾個數,如果減數的和能湊成整十的數,可以把減數先加後再減。這種口算比較簡便。

3.連乘中因數「湊整」。

如25×14×4,25與4的積是100,可直介面算出結果是140。



運用「分解法」口算

就是把題目中的某數「拆開」分別與另一個數運算,如25×32,原式變成25×4×8=10×8=80。



運用一些速算技巧進行口算

1.首同尾合10的兩個兩位數相乘的乘法速算。

即用其中一個十位上的數加1再乘以另一個數的十位數,所得積作兩個數相乘積的百位、千位,再用兩個數個位上數的積作兩個數相乘的積的個位、十位。如:14×16=224(4×6=24作個位、十位、(1+1)×1=2作百位)。

2.頭差1尾合10的兩個兩位數相乘的乘法速算。即用較大的因數的十位數的平方,減去它的個位數的平方。如:48×52=2500-4=2496。

3.採用「基準數」速算。

如623+595+602+600+588可選擇600為基數,先把每個數與基準數的差累計起來,再加上基數與項數的積。

4.掌握一些運算規律。

例如,兩個分母互質數且分子都為1的分數相減,可以把分母相乘的積作分母,把分母的差作分子;兩個分母互質數且分子相同,可以把分母相乘的積作為分母,分母相減的差再乘以分子作分子,等等。

Ⅳ 快速口算的方法是什麼

一、一種做多位乘法不用豎式的方法。我們都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168。其中有趣的規律:即個位上的數字正好是兩個因數個位數字的積。十位上的數字是兩個數字個位上的和。百位上的數字是兩個因數十位數字的積。例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾。~例如:
14X16=224 4=4X6的個位 2=2+4+6 2=1+1X1 試著做做看下面的題:
12X15= 11X13= 15X18= 17X19=二、幾十一乘以幾十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積。「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1 就一定正確。我們來看兩個算式:21×61=41×91= 用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這種速算方法直接寫得數時的思維過程。第一個算式,21×61=?思維過程是:2×6=12,2+6=8, 21×61 就等於1281。第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731。 試試上面題目吧!然後再看看下面幾題 61×91= 81×81= 31×71= 51×41=一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾數相乘2X3=6 (2)被乘數加上乘數的尾數12+3=15 (3)把兩計算結果相連即為所求結果【例2】 1 5X 1 5------------2 2 5(1)尾數相乘5X5=25(滿十進位)(2)被乘數加上乘數的尾數15+5=20,再加上個位進上的2即20+2=22(3)把兩計算結果相連即為所求結果二、兩位數、三位數乘法及乘方速算a.首數相同,尾數相加和是十的兩位數乘法 方法:尾數相乘,首數加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾數相乘4X6=24直接寫在十位和個位上(2)首數5加上1為6,兩首數相乘6X5=30(3)把兩結果相連即為所求結果【例2】 7 5X 7 5----------5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數7加上1為8,兩首數相乘8X7=56(3)把兩計算結果相連即可b.尾數是5的三位數乘方速算方法:尾數相乘,十位數加一,再將兩首數相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數12加上1為13,再兩數相乘13X12=156(3)兩計算結果相連c.任意兩位數乘法方法:尾數相乘,對角相乘再相加,首數相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾數相乘7X2=14(滿十進位)(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)(3)首數相乘3X6=18加上十位進上的4為18+4=22(4)把計算結果相連即為所求結果b.任意兩位數及三位平方速算方法:尾數的平方,首數乘尾數擴大2倍,首數的平方[例] 2 3X 2 3---------5 2 9 (1)尾數的平方3X3=9(滿十進位)(2)首尾數相乘2X3=6擴大兩倍為12寫在十位上(滿十進位)(3)首數的平方2X2=4加上十位進上的1為5(4)把計算結果相連即為所求結果c.三位數的平方與兩位數的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾數的平方2X2=4寫在個位(2)首尾數相乘13X2=26擴大2倍為52寫在個位上(滿十進位)(3)首數的平方13X13=169加上十位進上的5為174(4)把計算結果相連即為所求結果〖注意:三位數的首數指前兩位數字!〗三、大數的平方速算方法:把題目與100相差,相差數稱之為差數;先算差數的平方寫在個位和十位上(缺位補零),再用題目減去差數得一結果;最後把兩結果相連即為所求結果【例】 9 4X 9 4-----------8 8 3 6(1)94與100相差為6(2)差數6的平方36寫在個位和十位上(3)用94減去差數6為88寫在百位和千位上(4)把計算結果相連即為所求結果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能夠很快算出這些算式的正確答案嗎?注意,是很快哦!你能嗎?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神氣吧!速算秘訣:(就以第一題為例好啦)(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘。[5×(5+1)]=30;(2)再將末尾數相乘的得數寫在後面就可以得出正確的答案了。5×5=25;(3)3025!Bingo!其它依次類推就行了。仔細看每一個式子里的兩位數的十位是相同的,而個位的兩數則是相補的。這樣的速算秘訣只能夠適用於這種情況的算式。所以說大家千萬不要把巧算和真正的速算混淆在一起,真正的速算是任何數都能算的。一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我們再做一些復雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9。
這樣我們能不能找到一種簡便的演算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9同樣的方法你們可以拆出下面的數,也可以背口訣27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了。
上面我們的計算好象很麻煩,其實現在總結一下就簡單了。
看下一個題目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432發現什麼規律沒有?下面的題目好象不用算了,都是把前面的數加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我們再看看上面的計算結果,發現什麼了嗎?
我們把一個兩位數乘法變成了一位數的乘法。其中一個乘數的個位和十位的和等於9,這樣變化以後的數中一位數的那個乘數,都是正好比前面的乘數大1。
而後面的一個兩位數也有一個特點,就是一個連續數(12),1和2是連續的。
能不能找到一種更簡便的計算方法呢?
為了找到一種更簡便的演算法。我在這里引入一個新的名詞——補數。
什麼是補數呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
從上面的幾個加法可見,如果兩個數的和等於10,那麼這兩個數就互為補數。
也就是說1和9為補數,2和8為補數,3和7為補數,4和6為補數,5的補數還是5就不用記了,只要記4個就行了。
現在我們再看看上面的計算結果:
拿一個 63 × 12 = 7 × 108 = 756 舉例吧
結果的最前面一個數是7(不用管它是什麼位),是不是正好等於第一個乘數(63)中前面的數加1? 6 + 1 = 7
結果的後兩位怎麼算出來的呢?如果拿這個7去乘後面那個乘數(12)的最後一位的補數(8)會是什麼?7 × 8 = 56
呵呵,我們現在不用再分解了,只要把第一個乘數(63)中前面的數加1就是結果的最前面的數,再把這個數乘以後面那個乘數(12)的最後一位的補數(8)就得到結果的後兩位。
這樣行嗎?如果行的話,那可真是太快了,真的是速算了。
試一試其他的題:
18 × 12 =
第一個乘數(18)的前面的數加1:1 + 1 =2 ——結果最前面的數
拿2去乘第二個乘數(12)的後面的數(2)的補數(8):2×8=16
結果就是 216。看一看上面對嗎?
27 × 12 =
結果最前面的數——2 + 1 =3
結果最後面的數——3 ×8 = 24
結果 324
36 × 12 =
結果最前面的數——3 + 1 =4
結果最後面的數——4 ×8 = 32
結果 432
45 × 12 =
結果最前面的數——4 + 1 =5
結果最後面的數——5 ×8 = 40
結果 540
54 × 12 =
結果最前面的數——5 + 1 =6
結果最後面的數——6 ×8 = 48
結果 648
63 × 12 =
結果最前面的數——6 + 1 =7
結果最後面的數——7 ×8 = 56
結果 756
72 × 12 =
結果最前面的數——7 + 1 =8
結果最後面的數——8 ×8 = 64
結果 864
81 × 12 =
結果最前面的數——8 + 1 =9
結果最後面的數——9 ×8 = 72
結果 972
計算結果是不是和上面的方法一樣?從結果中還能看出什麼?
是不是計算結果的三位數的和還是等於9或者是9的倍數?
自己算一下看是不是?
看我這篇文章,下面我給你們出幾個題,看你們掌握了方法沒有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
上面的題目如果再擴展一下,把後面的連續數擴大到多位數。
如:123、234、345、2345、34567、123456、23456789等等
看一看有沒有什麼運算規律,或許你們都能找出快速的計算方法。
如果能的話,象
63 × 2345678 =
這樣的題目你們用口算就能快速計算出結果來。

Ⅵ 如何使數學口算題簡便計算

(x5)的平方等於x(x+1)後面再加25,譬如35*35=[3*(3+1)]25=1225
一個數乘以11技巧,兩位數,兩個數加起來放中間就是答案,譬如24*11=264等等
兩位數乘以101技巧,把這個數寫兩遍,譬如39*101=3939(三位數乘以1001也是這樣)
十幾乘以十幾,12*14=1(2+4)(2*4)=168

Ⅶ 123×11有什麼簡便的口算方法

這道題簡便的口算方法是把11看成十加一。123×十等於1230,123×一等於123然後相加是1350。

Ⅷ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅸ 口算有什麼快速方法

1、十位數是1的兩位數相乘

乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。

2、個位是1的兩位數相乘    

十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。 

3、十位相同個位不同的兩位數相乘    

被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。

4、首位相同,兩尾數和等於10的兩位數相乘     

十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。

5、首位相同,尾數和不等於10的兩位數相乘    

兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。

閱讀全文

與口算題簡便的方法相關的資料

熱點內容
地磚發黃了用什麼方法可以洗掉 瀏覽:576
大眾點評檢測方法 瀏覽:365
醫院設備經濟效益分析方法 瀏覽:379
點痣留下的紅印怎麼去除簡單方法 瀏覽:803
賓得k50跑焦解決方法 瀏覽:509
湖南情感挽回方法操作步驟 瀏覽:26
綁氣球串最簡單的方法 瀏覽:388
骨頭疏鬆最佳鍛煉方法 瀏覽:267
蒼耳葉的使用方法有哪些 瀏覽:86
優米手機root方法 瀏覽:292
鑄工塵肺的症狀及治療方法 瀏覽:795
汽車點煙器偶爾斷電解決方法 瀏覽:48
萬能的鍛煉方法 瀏覽:114
後麓茸面膜使用方法 瀏覽:841
電腦越獄使用方法 瀏覽:800
胎壓監測的使用方法和步驟 瀏覽:582
研學課題的研究方法和步驟怎麼寫 瀏覽:365
鍛煉清凈心的方法 瀏覽:81
解決牛市的方法 瀏覽:803
保護員工的最佳方法 瀏覽:837