『壹』 算一個數的百分之幾怎麼算
百分數是表示一個數是另一個數的百分之幾,也叫百分率或百分比。百分數通常不會寫成分數的形式,而採用符號「%」(百分號)來表示。
百分之幾的計算方法:用需要的數乘以所給的該數中的百分數。
1500 的百分之五就是 1500×5% = 1500 × 0.05=75;百分之十五就是 1500 × 0.15=225。
(1)怎麼計算一個數的方法擴展閱讀
百分比是一種表達比例,比率或分數數值的方法,如82%代表百分之八十二,或82/100、0.82。成和折則表示十分之幾,舉例如「七成」和「七折」,代表70/100或70%或0.7。所以百分比後面不能接單位。
史寧中教授指出:數學的本質是在認識數的同時, 認識數量之間的關系 (多與少) ,進一步抽象,是「數及數之間的關系 (大與小) 」。我們知道,兩個相關聯的數或數量之間的關系,小學階段主要可以分化為兩類:一是加減運算的和差關系, 二是乘除運算的倍比關系。百分數便隸屬於倍比關系。
參考資料網路_百分比
『貳』 算一個數精確到第幾位的方法
算一個精確到小數點後第n位的方法:先算到小數點後第n+1位,然後對這位數四捨五入。算一個整數精確到n位(個、十、百、千位等)的方法,就先將該位數的後一位數四捨五入,然後這位數的後面全用0補充,確保其位數不變。比如,將5678499精確到千位:5678000.
『叄』 如何快速求一個數平方的方法
1、求任意一個兩位數的平方
方法:先把這個數看成 5 的倍數與一個小於 5 的數的和(或差)的形式,再用這兩個數的平方和加上(或減去)這兩個數的積的 2 倍。
2、求任意一個兩位數的平方
方法:用這個數加上它的個位數的補數的和乘以它們的差,再用這個積加上這個補數的平方。
3、求一千零幾的平方
方法:先寫上這個數加上個位數的 2 倍的和,再寫上一個 0,最後寫上個位數的平方(個位數的平方小於 10,就在它前面補一個 0)。
4、求九百九十幾的平方
方法:先寫上 1000 減去這個數的補數的 2 倍的差,再寫一個 0,最後寫上補數的平方(補數的平方小於 10,就在它前面補一個 0)。
5、求末兩位是 25 的數的平方
方法:用十位前面的數乘以在它後面添上 5 的數,在積後添上 625。
(3)怎麼計算一個數的方法擴展閱讀:
關於的平方故事
相傳印度有位外來的大臣跟國王下棋,國王輸了,就答應滿足他一個要求:在棋盤上放米粒。第一格放1粒,第二格放2粒,然後是4粒,8粒,16粒…直到放到64格。國王哈哈大笑,認為他很傻,以為只要這么一點米。
按照大臣的要求,放滿64個格,需米 2的64次方間1粒。這個數是18446744073709551615,是二十位的數字。這些米別說傾空國庫,就是整個印度,甚至全世界的米,都無法滿足這個大臣的要求!
『肆』 一個數的幾次方怎麼算有簡便的方法嗎
一個數的幾次方計算就是用幾個相同的這個數相乘。有簡便方法,把這個次方分解。
分析過程如下:
如求:2的4次方。
2的4次方就是:2×2×2×2,通過整數的乘法計算可得:2^4=16。
簡便方法舉例,如求2^8。
2^8=2^4×2^4=16×16=256。
(4)怎麼計算一個數的方法擴展閱讀:
指數的運演算法則:
1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】
3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】
4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】
常用平方數:
1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100。
11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400。
『伍』 整數的計算方法
整數加、減:把數位對齊,從低位加起。
整數乘法:相同數位對齊,從乘法的末位算起,用乘法的每一位去乘被乘數,得數的末位和乘數對齊。
整數除法:從被除數的最高位除起,除到被除數的哪一位,商就寫在那一位上面,每次除後餘下的數必須比余數小。
整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數、分數。
如果不加特殊說明,我們所涉及的數都是整數,所採用的字母也表示整數。
(5)怎麼計算一個數的方法擴展閱讀:
整數中,能夠被2整除的數,叫做偶數。不能被2整除的數則叫做奇數。即當n是整數時,偶數可表示為2n(n為整數);奇數則可表示為2n+1(或2n-1)。
偶數包括正偶數(亦稱雙數)、負偶數和0。所有整數不是奇數,就是偶數。
在十進制里,我們可用看個位數的方式判斷該數是奇數還是偶數:個位為1,3,5,7,9的數為奇數;個位為0,2,4,6,8的數為偶數。
整除特徵:
1. 若一個數的末位是單偶數,則這個數能被2整除。
2. 若一個數的數字和能被3整除,則這個整數能被3整除。
3. 若一個數的末尾兩位數能被4整除,則這個數能被4整除。
4. 若一個數的末位是0或5,則這個數能被5整除。
5. 若一個數能被2和3整除,則這個數能被6整除。
『陸』 求一個數的幾分之幾是多少,用什麼方法計算呢
求一個數的幾分之幾是多少,用(乘)法計算。
乘法:求兩個數乘積的運算。
1、一個數乘整數,是求幾個相同加數和的簡便運算。
2、一個數乘小數,是求這個數的十分之幾、百分之幾、千分之幾……是多少。
3、一個數乘分數,是求這個數的幾分之幾是多少。
(6)怎麼計算一個數的方法擴展閱讀:
分數加減法
1、同分母分數相加減,分母不變,即分數單位不變,分子相加減,能約分的要約分。
2、異分母分數相加減,先通分,即運用分數的基本性質將異分母分數轉化為同分母分數,改變其分數單位而大小不變,再按同分母分數相加減法去計算,最後能約分的要約分。
乘除法
1、分數乘整數,分母不變,分子乘整數,最後能約分的要約分。
2、分數乘分數,用分子乘分子,用分母乘分母,最後能約分的要約分。
3、分數除以整數,分母不變,如果分子是整數的倍數,則用分子除以整數,最後能約分的要約分。
4、分數除以整數,分母不變,如果分子不是整數的倍數,則用這個分數乘這個整數的倒數,最後能約分的要約分。
5、分數除以分數,等於被除數乘除數的倒數,最後能約分的要約分。
『柒』 如何快速的計算出一個數的n次方
n很小的整數時,將這個數自乘n次即可。
當n為較大可因數分解x*y時,可分兩步算a^n=a^(x*y)=(a^x)^y。
如10^15=10^(3*5)=(10^3)^5=1000^5=10^15
次方有兩種演算法:
第一種是直接用乘法計算,例:3⁴=3×3×3×3=81
第二種則是用次方階級下的數相乘,例:3⁴=9×9=81
『捌』 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2