導航:首頁 > 知識科普 > MRI分子成像方法有哪些

MRI分子成像方法有哪些

發布時間:2022-07-06 02:35:42

① mri成像的基礎是什麼

磁共振成像(MRI)是利用氫原子核在磁場內所產生的信號經重建成像的一種影像技術。人體內的每一個氫質子可視作一個小磁體,進入強外磁場前,質子排列雜亂無章。放入強外磁場中,則它們僅在平行或反平行於外磁場磁力線兩個方向上排列。平行於外磁力線的質子處於低能級,反平行於外磁場磁力線的處於高能級,前者比後者略多。在一定頻率的射頻脈沖的激勵下,部分低能級的質子躍入高能級,當射頻脈沖停止後又恢復為原來的狀態,過程中以射頻信號的形式釋放出能量,這些被釋放出的、並進行了三維空間編碼的射頻信號被體外線圈接收,經計算機處理後重建成圖像。

1、MRI 血管成像的基本原理磁共振血管造影(MRA)是對血管和血流信號特徵顯示的一種技術。MRA 作為一種無創傷性的檢查,與 CT 及常規放射學檢查相比具有特殊的優勢,它不需要使用對比劑,流體的流動即是。MRI 成像固有的生理對比劑,常用的 MRA 方法有時間飛越(TOF)法和相位對比(PC)法。但為了 提高圖像質量,也可用造影劑顯示血管。

2、MRI 彌散成像(擴散成像)的基本原理 彌散成像(diffu― sion imaging,DI)是利用組織內分子的布朗運動(分子隨機熱運動)而成像。可以用於腦缺血的檢查。由於腦細胞及不同神經束的缺血改變,導致水分子的彌散運動受限,這種彌散受限可以通過彌散加權成像(DWI)顯示出來。

3、MRI 灌注成像的基本原理:灌注成像(perfusion ima― ging,PI)是通過引入順磁性對比劑,使成像組織的 T1、T2 值縮短,同時利用超快速成像方法獲得成像的時間分辨力。通過靜脈團注順磁性對比劑後周圍組織微循環的 T1、T2 值的變化率,計算組織血流灌注功能。

4、MRI 功能成像的基本原理 腦活動功能成像是利用腦活動區域局部血液中氧合血紅蛋白與去氧血紅蛋白比例的變化,所引起局部組織 T2的改變,從而在 T2加權像上反映出腦組織局部活動功能的成像技術。這一技術又稱為血氧水平依賴性 MRI 成像(BOLD MRI)。其他是通過刺激周圍神經,激活相應皮層中樞,使中樞區域的血流量增加,進而引起血氧濃度及磁化率的改變而獲得的。

② 簡述幾種分子成像方法

分子成像檢驗
分子成像檢驗是指活體內生物過程在細胞和分子水平上特徵的顯示,在分子水平上藉助化學和生物制劑的作用以無創的方式成像的檢測方式。為深入揭示疾病生理病理過程有關機制,以及對疾病和治療進行實時、動態、細致、無創、靶向性的探測和跟蹤提供了有效手段。

檢查前准備
根據所採取方法的不同採取相應的准備措施,如放射性放射性核素分子成像、光學分子成像前需排除葯物過敏;磁共振分子成像應詳細了解病史,確保無任何金屬或磁性物質植入體內等。

操作方法
常用的方法有放射性核素分子成像、磁共振分子成像、光學分子成像、超聲分子成像、CT分子成像、多模式分子成像等。可以通過分子探針與靶點直接反應成像;也可以通過報告基因間接轉錄某種蛋白質基因後,其表達產物被報告探針檢測,報告探針與報告基因的表達產物特異性結合之後被成像設備檢測到而進行的成像;還可利用替代標志物探針來反映內源性分子或基因生物過程的下游結果等。

臨床意義
分子探針與體內特定研究目標結合,可以定量地反映生物過程中分子水平上的變化。
1.腫瘤的應用
在腫瘤血管成像、基因成像、腫瘤細胞凋亡成像,腫瘤間質成像、受體成像和腫瘤代謝成像等腫瘤血管成像在腫瘤研究中占重要位置。
2.心血管應用
可幫助探討動脈粥樣硬化、心肌缺血、心肌無力、心力衰竭等心血管病的發病機制。如在動脈硬化研究中,針對硬化斑塊成分、尖性細胞、增殖的平滑肌細胞,纖維蛋白及纖維蛋白原等設計不同探針,對斑塊進行分析和診斷。
3.神經系統應用
利用放射性核素分子成像和磁共振腦功能定位成像方法對腦神經病變、腫瘤性疾病進行研究,如腦退行病變中的阿爾茨海默症、帕金森病等。
4.其他
分子成像從核酸-蛋白質、蛋白質-蛋白質分子間相互關系及生物特徵表達反映發病機制,也為其他系統疾病的早期預警診斷和治療提供基因水平評估方法。

③ mri的成像原理

MRI:磁共振成像,英文全稱是:Magnetic Resonance Imaging

原理
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為磁共振成像術(MR)。

MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過計算機處理轉換後在屏幕上顯示圖像。

成像原理 描述1:
核磁共振成像原理:原子核帶有正電,許多元素的原子核,如1H、19FT和31P等進行自旋運動。通常情況下,原子核自旋軸的排列是無規律的,但將其置於外加磁場中時,核自旋空間取向從無序向有序過渡。這樣一來,自旋的核同時也以自旋軸和外加磁場的向量方向的夾角繞外加磁場向量旋進,這種旋進叫做拉莫爾旋進,就像旋轉的陀螺在地球的重力下的轉動。自旋系統的磁化矢量由零逐漸增長,當系統達到平衡時,磁化強度達到穩定值。如果此時核自旋系統受到外界作用,如一定頻率的射頻激發原子核即可引起共振效應。這樣,自旋核還要在射頻方向上旋進,這種疊加的旋進狀態叫做章動。在射頻脈沖停止後,自旋系統已激化的原子核,不能維持這種狀態,將回復到磁場中原來的排列狀態,同時釋放出微弱的能量,成為射電信號,把這許多信號檢出,並使之能進行空間分辨,就得到運動中原子核分布圖像。原子核從激化的狀態回復到平衡排列狀態的過程叫弛豫過程。它所需的時間叫弛豫時間。弛豫時間有兩種即T1和T2,T1為自旋-點陣或縱向馳豫時間,T2為自旋-自旋或橫向弛豫時間。

總結成像原理:
元素的原子核進行自旋運動,無規律;
外加磁場,核自旋從無序變為有序,拉莫爾旋進;系統達到平衡;
一定頻率的射頻激發原子核,共振效應,射頻方向旋進,章動;
射頻脈沖停止,原子核回復到磁場中原來排列狀態,釋放微弱的能量,射電信號,檢出這些信號,進行空間分辨,就得到運動中原子核分布圖像。

④ 磁共振成像(MRI)是什麼

MRI為Magnetic Resonance Imaging的縮寫,中文稱「磁共振或磁共振成像」,過去曾稱「核磁共振」,亦可稱共軛攝影法。MRI是一種新穎的成像方法,它具有組織對比性強、空間解析度高、多平面的解剖結構顯示和無射線損傷等特點,並對生理變化特別敏感。

近年來,醫學影像學技術飛速發展,已有4種主要的影像診斷方法,包括基於功能檢查的核醫學成像方法(伽馬照相和單光子CT)和基於形態學的3種方法:X線(包括CT)、超聲和MRI。尤其是由於MRI的出現使影像診斷學水平邁上了一個新階段,MRI臨床應用范圍越來越廣,可與上述幾種檢查方法相輔相成,某些部位還超越CT檢查。

但是,帶有心臟起搏器及神經刺激器者、曾做過動脈瘤手術及顱內帶有動脈瘤夾者、曾做過心臟手術並帶有人工心臟瓣膜者、有眼球內金屬異物或內耳植入金屬假體者,禁用MRI。

體內有各種金屬植入物的病人、妊娠期婦女、危重病人需要使用生命支持系統者、癲癇病人、幽閉恐懼症病人,在檢查時應慎重對待。

⑤ 磁共振成像術是怎樣的

除了X射線、CT之外,醫生們還有一種「神秘武器」,這就是磁共振成像術,簡稱為MRI。這是在磁共振頻譜學及CT技術基礎上發展起來的一項嶄新的成像技術。

我們知道,構成我們機體的70%是水分,其分子式的H2O。在這個分子結構中,「H」原子具有一個不對稱的質子,而質子具有自身旋轉的特性,同時也就產生電磁效應。但在通常的情況下,許多質子皆是無規律地排列,因此各個質子所產生的磁效應相互抵消,表現不出具體的磁性來。然而當外加一個磁場時,各個質子所產生的有如一個個小磁體的磁矩便會排列成為一個方向,此時若再加一個脈沖磁場,就會使這些方向一致的磁矩產生一定角度的迴旋運動,而且隨著這個脈沖磁場的變化還可產生一系列的電磁波,這就是人們熟知的「磁共振現象」。另外,科學家們將一個迴旋運動時間稱為質子的「馳豫時間」。

20世紀80年代, 一個嶄新的掃描技術———核磁共振成像術(簡稱MRI)出現了

人體由各種器官及組織構成。因此,在磁共振的過程中,不同組織有不同強度的磁共振信號,以及不同的「馳豫時間」;另外,即使同一組織,在病理及生理狀態下,磁共振信號強度及馳豫時間亦不相同。這些差異可由磁共振信號反映出來,這樣便構成了磁共振成像而成為應用於臨床診斷的基礎。再者,由於不同組織及同一組織不同狀態下質子密度不同,因而通過MRI還能提供組織器官及病灶細胞內外的物理、化學、生物及生化等方面的信息。還有一點要提及的是,在操作過程中,MRI不造成放射性損傷,還可以從任何方面作斷層分析,因此MRI技術「異軍突起」,在當代醫學診斷中愈來愈顯出它的特殊地位。MRI幾乎可用於全身各處疾病的檢查與診斷,如腦內、胸腔內、腹部、盆腔等。

20世紀是科學技術迅猛發展的時期,醫學影像學的巨大成就除了上面提到的CT及MRI以外,還有一種最新技術叫放射性核素發射計算機斷層,簡稱為ECT。它包括正電子發射斷層(簡稱PET)和單光子發射斷層(簡稱SPECT)。ECT綜合利用了核醫學的示蹤技術和CT的圖像重建原理,兼有二者之長,既具備形象化顯示活體生理和代謝功能的能力,又有解析度高、能進行立體探測和斷層顯示的優勢,是目前醫學影像診斷技術中的後起之秀。

近幾年科學家們還研製出一種比CT清晰1000倍的成像新技術,叫做離子微層析掃描,簡稱IMI。它是利用有絲加速器發射出細微的離子來,讓這種離子束通過組織,再用特製的硅探測定出它通過該組織時損失了多少能量,而後再由計算機進行綜合分析,從而從不同角度顯示該組織的結構或病變。科學家們相信,IMI甚至可以識別出早期癌細胞的變化,如果真是這樣,將大大提高癌症早期的診斷率,挽救更多的生命。

⑥ mr全息成像原理

磁共振成像(MRI)是利用氫原子核在磁場內所產生的信號經重建成像的一種影像技術。

3、MRI 灌注成像:

基本原理:

灌注成像(perfusion ima― ging,PI)是通過引入順磁性對比劑,使成像組織的 T1、T2 值縮短,同時利用超快速成像方法獲得成像的時間分辨力。通過靜脈團注順磁性對比劑後周圍組織微循環的 T1、T2 值的變化率,計算組織血流灌注功能。

4、MRI功能成像:

腦活動功能成像是利用腦活動區域局部血液中氧合血紅蛋白與去氧血紅蛋白比例的變化,所引起局部組織 T2的改變,從而在 T2加權像上反映出腦組織局部活動功能的成像技術。

這一技術又稱為血氧水平依賴性 MRI 成像(BOLD MRI)。是通過刺激周圍神經,激活相應皮層中樞,使中樞區域的血流量增加,進而引起血氧濃度及磁化率的改變而獲得的。

(醫學教育網)

⑦ 什麼是mri的彌散和灌注

彌散就是DWI,是以平面回波(EPI)為基礎反映體內水分子彌散狀況的成像方法,DWI對沿著施加彌散梯度磁場方向上的所有組織生理活動中的微小運動均敏感,故可用於測量單位時間內水分子的位移運動。灌注是急性腦缺血發生後,局部血液循環動力學相應發生變化,反映腦組織血液循環動力學的指標很多,其中最重要和最常用的有3種:CBV(腦血容積)、CBF(腦血流速度)、MTT(
平均通過時間)。MRI灌注成像是利用MRI的快速成像技術,來分析腦血液動力學的改變,通過進一步評價CBF、CBV、MTT等指標來描述早期腦缺血患者腦血流量低灌注區、梗死區及缺血暗帶區。

⑧ MRI的基本原理要通俗版的

核磁共振成像(Nuclear Magnetic Resonance Imaging‎,簡稱NMRI‎),又稱自旋成像(spin imaging‎),也稱磁共振成像(Magnetic Resonance Imaging‎,簡稱MRI‎),台灣又稱磁振造影,是利用核磁共振(nuclear magnetic resonnance‎,簡稱NMR‎)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。
將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。
物理原理
核磁共振成像是隨著計算機技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經計算機處理而成像的。原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。核磁共振成像的「核」指的是氫原子核,因為人體的約70%是由水組成的,MRI即依賴水中氫原子。當把物體放置在磁場中,用適當的電磁波照射它,使之共振,然後分析它釋放的電磁波,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。通過一個磁共振成像掃描人類大腦獲得的一個連續切片的動畫,由頭頂開始,一直到基部。
核磁共振成像是隨著-{zh-tw:電腦;zh-cn:計算機}-技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。醫生考慮到患者對「核」的恐懼心理,故常將這門技術稱為磁共振成像。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經-{zh-tw:電腦;zh-cn:計算機}-處理而成像的。
原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。
當施加一射頻脈沖信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的信息。這樣,病理變化就能被記錄下來。
人體2/3的重量為水分,如此高的比例正是磁共振成像技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水分形態的變化,即可由磁共振圖像反應出來。
MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關系,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。
系統組成
NMR實驗裝置
採用調節頻率的方法來達到核磁共振。由線圈向樣品發射電磁波,調制振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。
MRI系統的組成
現代臨床高場(3.0T)MRI掃描器[編輯]
磁鐵系統
靜磁場:又稱主磁場。當前臨床所用超導磁鐵,磁場強度有0.5到4.0T(特斯拉),常見的為1.5T和3.0T;動物實驗用的小型MRI則有4.7T、7.0T與9.4T等多種主磁場強度。另有勻磁線圈(shim coil)協助達到磁場的高均勻度。
梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
射頻系統
射頻(RF)發生器:產生短而強的射頻場,以脈沖方式加到樣品上,使樣品中的氫核產生NMR現象。
射頻(RF)接收器:接收NMR信號,放大後進入圖像處理系統。
計算機圖像重建系統
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數學信號,根據與觀察層面各體素的對應關系,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。
MRI的基本方法
選片梯度場Gz
相編碼和頻率編碼
圖像重建

磁共振成像的優點

與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography‎, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:
1.對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
2.各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
3.通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。不像CT只能獲取與人體長軸垂直的橫斷面;
4.對人體沒有氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。
MRI的缺點及可能存在的危害
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:
1.和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振檢查仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
2.對肺部的檢查不優於X射線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
3.對胃腸道的病變不如內窺鏡檢查;
4.掃描時間長,空間分辨力不夠理想;
5.由於強磁場的原因,MRI對諸如體內有磁金屬或起搏器的特殊病人卻不能適用。
MRI系統可能對人體造成傷害的因素主要包括以下方面:
1.強靜磁場:在有鐵磁性物質存在的情況下,不論是埋植在患者體內還是在磁場范圍內,都可能是危險因素;
2.隨時間變化的梯度場:可在受試者體內誘導產生電場而興奮神經或肌肉。外周神經興奮是梯度場安全的上限指標。在足夠強度下,可以產生外周神經興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫;
3.射頻場(RF)的致熱效應:在MRI聚焦或測量過程中所用到的大角度射頻場發射,其電磁能量在患者組織內轉化成熱能,使組織溫度升高。RF的致熱效應需要進一步探討,臨床掃描儀對於射頻能量有所謂「特定吸收率」(specific absorption rate, SAR)的限制;
4.雜訊:MRI運行過程中產生的各種雜訊,可能使某些患者的聽力受到損傷;
造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發生率在2%-4%。

⑨ 核磁共振成像是怎麼回事

核磁共振成像
維基網路,自由的網路全書
跳轉到: 導航, 搜索

人腦縱切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,簡稱NMRI),又稱自旋成像(spin imaging),也稱磁共振成像、磁振造影(Magnetic Resonance Imaging,簡稱MRI),是利用核磁共振(nuclear magnetic resonnance,簡稱NMR)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。

將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。

從核磁共振現象發現到MRI技術成熟這幾十年期間,有關核磁共振的研究領域曾在三個領域(物理、化學、生理學或醫學)內獲得了6次諾貝爾獎,足以說明此領域及其衍生技術的重要性。

目錄 [隱藏]
1 物理原理
1.1 原理概述
1.2 數學運算
2 系統組成
2.1 NMR實驗裝置
2.2 MRI系統的組成
2.2.1 磁鐵系統
2.2.2 射頻系統
2.2.3 計算機圖像重建系統
2.3 MRI的基本方法
3 技術應用
3.1 MRI在醫學上的應用
3.1.1 原理概述
3.1.2 磁共振成像的優點
3.1.3 MRI的缺點及可能存在的危害
3.2 MRI在化學領域的應用
3.3 磁共振成像的其他進展
4 諾貝爾獲獎者的貢獻
5 未來展望
6 相關條目
6.1 磁化准備
6.2 取像方法
6.3 醫學生理性應用
7 參考文獻

[編輯]
物理原理

通過一個磁共振成像掃描人類大腦獲得的一個連續切片的動畫,由頭頂開始,一直到基部。[編輯]
原理概述
核磁共振成像是隨著計算機技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。醫生考慮到患者對「核」的恐懼心理,故常將這門技術稱為磁共振成像。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經計算機處理而成像的。

原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。

核磁共振成像的「核」指的是氫原子核,因為人體的約70%是由水組成的,MRI即依賴水中氫原子。當把物體放置在磁場中,用適當的電磁波照射它,使之共振,然後分析它釋放的電磁波,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。

[編輯]
數學運算
原子核帶正電並有自旋運動,其自旋運動必將產生磁矩,稱為核磁矩。研究表明,核磁矩μ與原子核的自旋角動量S 成正比,即

式中γ 為比例系數,稱為原子核的旋磁比。在外磁場中,原子核自旋角動量的空間取向是量子化的,它在外磁場方向上的投影值可表示為

m為核自旋量子數。依據核磁矩與自旋角動量的關系,核磁矩在外磁場中的取向也是量子化的,它在磁場方向上的投影值為

對於不同的核,m分別取整數或半整數。在外磁場中,具有磁矩的原子核具有相應的能量,其數值可表示為

式中B為磁感應強度。可見,原子核在外磁場中的能量也是量子化的。由於磁矩和磁場的相互作用,自旋能量分裂成一系列分立的能級,相鄰的兩個能級之差ΔE = γhB。用頻率適當的電磁輻射照射原子核,如果電磁輻射光子能量hν恰好為兩相鄰核能級之差ΔE,則原子核就會吸收這個光子,發生核磁共振的頻率條件是:

式中ν為頻率,ω為角頻率。對於確定的核,旋磁比γ可被精確地測定。可見,通過測定核磁共振時輻射場的頻率ν,就能確定磁感應強度;反之,若已知磁感應強度,即可確定核的共振頻率。

[編輯]
系統組成
[編輯]
NMR實驗裝置
採用調節頻率的方法來達到核磁共振。由線圈向樣品發射電磁波,調制振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。

[編輯]
MRI系統的組成
[編輯]
磁鐵系統
靜磁場:當前臨床所用超導磁鐵,磁場強度有0.5到4.0T,常見的為1.5T和3.0T,另有勻磁線圈(shim coil)協助達到高均勻度。
梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
[編輯]
射頻系統
射頻(RF)發生器:產生短而強的射頻場,以脈沖方式加到樣品上,使樣品中的氫核產生NMR現象。
射頻(RF)接收器:接收NMR信號,放大後進入圖像處理系統。
[編輯]
計算機圖像重建系統
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數學信號,根據與觀察層面各體素的對應關系,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。

[編輯]
MRI的基本方法
選片梯度場Gz
相編碼和頻率編碼
圖像重建
[編輯]
技術應用

3D MRI[編輯]
MRI在醫學上的應用
[編輯]
原理概述
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。

當施加一射頻脈沖信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的信息。這樣,病理變化就能被記錄下來。

人體2/3的重量為水分,如此高的比例正是磁共振成像技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水分形態的變化,即可由磁共振圖像反應出來。

MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關系,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。

[編輯]
磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:

對人體沒有游離輻射損傷;
各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位;
能診斷心臟病變,CT因掃描速度慢而難以勝任;
對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

人類腹部冠狀切面磁共振影像[編輯]
MRI的缺點及可能存在的危害
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:

和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振檢查仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
對肺部的檢查不優於X射線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
對胃腸道的病變不如內窺鏡檢查;
掃描時間長,空間分辨力不夠理想;
由於強磁場的原因,MRI對諸如體內有磁金屬或起搏器的特殊病人卻不能適用。
MRI系統可能對人體造成傷害的因素主要包括以下方面:

強靜磁場:在有鐵磁性物質存在的情況下,不論是埋植在患者體內還是在磁場范圍內,都可能是危險因素;
隨時間變化的梯度場:可在受試者體內誘導產生電場而興奮神經或肌肉。外周神經興奮是梯度場安全的上限指標。在足夠強度下,可以產生外周神經興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫;
射頻場(RF)的致熱效應:在MRI聚焦或測量過程中所用到的大角度射頻場發射,其電磁能量在患者組織內轉化成熱能,使組織溫度升高。RF的致熱效應需要進一步探討,臨床掃瞄器對於射頻能量有所謂「特定吸收率」(specific absorption rate, SAR)的限制;
雜訊:MRI運行過程中產生的各種雜訊,可能使某些患者的聽力受到損傷;
造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發生率在2%-4%。
[編輯]
MRI在化學領域的應用
MRI在化學領域的應用沒有醫學領域那麼廣泛,主要是因為技術上的難題及成像材料上的困難,目前主要應用於以下幾個方面:

在高分子化學領域,如碳纖維增強環氧樹脂的研究、固態反應的空間有向性研究、聚合物中溶劑擴散的研究、聚合物硫化及彈性體的均勻性研究等;
在金屬陶瓷中,通過對多孔結構的研究來檢測陶瓷製品中存在的砂眼;
在火箭燃料中,用於探測固體燃料中的缺陷以及填充物、增塑劑和推進劑的分布情況;
在石油化學方面,主要側重於研究流體在岩石中的分布狀態和流通性以及對油藏描述與強化採油機理的研究。
[編輯]
磁共振成像的其他進展
核磁共振分析技術是通過核磁共振譜線特徵參數(如譜線寬度、譜線輪廓形狀、譜線面積、譜線位置等)的測定來分析物質的分子結構與性質。它可以不破壞被測樣品的內部結構,是一種完全無損的檢測方法。同時,它具有非常高的分辨本領和精確度,而且可以用於測量的核也比較多,所有這些都優於其它測量方法。因此,核磁共振技術在物理、化學、醫療、石油化工、考古等方面獲得了廣泛的應用。

磁共振顯微術(MR micros, MRM/μMRI)是MRI技術中稍微晚一些發展起來的技術,MRM最高空間解析度是4μm,已經可以接近一般光學顯微鏡像的水平。MRM已經非常普遍地用作疾病和葯物的動物模型研究。
活體磁共振能譜(in vivo MR spectros, MRS)能夠測定動物或人體某一指定部位的NMR譜,從而直接辨認和分析其中的化學成分。
[編輯]
諾貝爾獲獎者的貢獻
2003年10月6日,瑞典卡羅林斯卡醫學院宣布,2003年諾貝爾生理學或醫學獎授予美國化學家保羅·勞特布爾(Paul C. Lauterbur)和英國物理學家彼得·曼斯菲爾德(Peter Mansfield),以表彰他們在醫學診斷和研究領域內所使用的核磁共振成像技術領域的突破性成就。

勞特布爾的貢獻是,在主磁場內附加一個不均勻的磁場,把梯度引入磁場中,從而創造了一種可視的用其他技術手段卻看不到的物質內部結構的二維結構圖像。他描述了怎樣把梯度磁體添加到主磁體中,然後能看到沉浸在重水中的裝有普通水的試管的交叉截面。除此之外沒有其他圖像技術可以在普通水和重水之間區分圖像。通過引進梯度磁場,可以逐點改變核磁共振電磁波頻率,通過對發射出的電磁波的分析,可以確定其信號來源。

曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場理論,推動了其實際應用。他發現磁共振信號的數學分析方法,為該方法從理論走向應用奠定了基礎。這使得10年後磁共振成像成為臨床診斷的一種現實可行的方法。他利用磁場中的梯度更為精確地顯示共振中的差異。他證明,如何有效而迅速地分析探測到的信號,並且把它們轉化成圖像。曼斯菲爾德還提出了極快速的梯度變化可以獲得瞬間即逝的圖像,即平面回波掃描成像(echo-planar imaging, EPI)技術,成為20世紀90年代開始蓬勃興起的功能磁共振成像(functional MRI, fMRI)研究的主要手段。

雷蒙德·達馬蒂安的「用於癌組織檢測的設備和方法」值得一提的是,2003年諾貝爾物理學獎獲得者們在超導體和超流體理論上做出的開創性貢獻,為獲得2003年度諾貝爾生理學或醫學獎的兩位科學家開發核磁共振掃描儀提供了理論基礎,為核磁共振成像技術鋪平了道路。由於他們的理論工作,核磁共振成像技術才取得了突破,使人體內部器官高清晰度的圖像成為可能。

此外,在2003年10月10日的《紐約時報》和《華盛頓郵報》上,同時出現了佛納(Fonar)公司的一則整版廣告:「雷蒙德·達馬蒂安(Raymond Damadian),應當與彼得·曼斯菲爾德和保羅·勞特布爾分享2003年諾貝爾生理學或醫學獎。沒有他,就沒有核磁共振成像技術。」指責諾貝爾獎委員會「篡改歷史」而引起廣泛爭議。事實上,對MRI的發明權歸屬問題已爭論了許多年,而且爭得頗為激烈。而在學界看來,達馬蒂安更多是一個生意人,而不是科學家。

[編輯]
未來展望
人腦是如何思維的,一直是個謎。而且是科學家們關注的重要課題。而利用MRI的腦功能成像則有助於我們在活體和整體水平上研究人的思維。其中,關於盲童的手能否代替眼睛的研究,是一個很好的樣本。正常人能見到藍天碧水,然後在大腦里構成圖像,形成意境,而從未見過世界的盲童,用手也能摸文字,文字告訴他大千世界,盲童是否也能「看」到呢?專家通過功能性MRI,掃描正常和盲童的大腦,發現盲童也會像正常人一樣,在大腦的視皮質部有很好的激活區。由此可以初步得出結論,盲童通過認知教育,手是可以代替眼睛「看」到外面世界的。

快速掃描技術的研究與應用,將使經典MRI成像方法掃描病人的時間由幾分鍾、十幾分鍾縮短至幾毫秒,使因器官運動對圖像造成的影響忽略不計;MRI血流成像,利用流空效應使MRI圖像上把血管的形態鮮明地呈現出來,使測量血管中血液的流向和流速成為可能;MRI波譜分析可利用高磁場實現人體局部組織的波譜分析技術,從而增加幫助診斷的信息;腦功能成像,利用高磁場共振成像研究腦的功能及其發生機制是腦科學中最重要的課題。有理由相信,MRI將發展成為思維閱讀器。

20世紀中葉至今,信息技術和生命科學是發展最活躍的兩個領域,專家相信,作為這兩者結合物的MRI技術,繼續向微觀和功能檢查上發展,對揭示生命的奧秘將發揮更大的作用。

[編輯]
相關條目
核磁共振
射頻
射頻線圈
梯度磁場
[編輯]
磁化准備
反轉回復(inversion recovery)
飽和回覆(saturation recovery)
驅動平衡(driven equilibrium)
[編輯]
取像方法
自旋迴波(spin echo)
梯度回波(gradient echo)
平行成像(parallel imaging)
面回波成像(echo-planar imaging, EPI)
定常態自由進動成像(steady-state free precession imaging, SSFP)
[編輯]
醫學生理性應用
磁振血管攝影(MR angiography)
磁振膽胰攝影(MR cholangiopancreatogram, MRCP)
擴散權重影像(diffusion-weighted image)
擴散張量影像(diffusion tensor image)
灌流權重影像(perfusion-weighted image)
功能性磁共振成像(functional MRI, fMRI)
[編輯]
參考文獻
傅傑青〈核磁共振——獲得諾貝爾獎次數最多的一個科學專題〉《自然雜志》, 2003, (06):357-261
別業廣、呂樺〈再談核磁共振在醫學方面的應用〉《物理與工程》, 2004, (02):34, 61
金永君、艾延寶〈核磁共振技術及應用〉《物理與工程》, 2002, (01):47-48, 50
劉東華、李顯耀、孫朝暉〈核磁共振成像〉《大學物理》, 1997, (10):36-39, 29
阮萍〈核磁共振成像及其醫學應用〉《廣西物理》, 1999, (02):50-53, 28
Lauterbur P C Nature, 1973, 242:190
黃衛華〈走近核磁共振〉《醫葯與保健》, 2004, (03):15
葉朝輝〈磁共振成像新進展〉《物理》, 2004, (01):12-17
田建廣、劉買利、夏照帆、葉朝輝〈磁共振成像的安全性〉《波譜學雜志》, 2002, (06):505-511
蔣子江〈核磁共振成像NMRI在化學領域中的應用〉《化學世界》, 1995, (11):563-565
樊慶福〈核磁共振成像與諾貝爾獎〉《上海生物醫學工程》, 2003, (04):封三
取自"http://wikipedia.cnblog.org/wiki/%E6%A0%B8%E7%A3%81%E5%85%B1%E6%8C%AF%E6%88%90%E5%83%8F"
頁面分類: 電磁學 | 原子核物理學 | 醫療設備

⑩ 核磁共振成像MRI包括哪些檢查

2.鼻咽部良性病變。3.由其他部位侵入到鼻咽部粘膜間隙的病變。4.喉部良、惡性腫瘤。檢查介紹:對鼻咽腫瘤檢查,MRI比CT對鼻咽部正常解剖以及病理解剖的顯示,比CT清晰、全面。臨床意義:MRI比CT對疾病的診斷更有意義。·肝、膽、胰、脾的MRI檢查(核磁共振檢查)正常范圍:1.肝、膽、胰、脾的原發性或轉移性腫瘤,以及肝海綿狀血管瘤。2.肝寄生蟲病:如肝包蟲病。3.彌漫性肝病:如肝硬變、脂肪肝、色素沈著症。4.肝、膽、胰、脾先天性發育異常。5.肝膿腫。6.胰腺炎及其並發症。檢查介紹:能明確病變的程度、范圍及其特徵,並能和其他腫瘤鑒別。對肝、脾囊腫、海綿狀血管瘤有確診作用。臨床意義:MRI比CT對疾病的診斷更有意義。·核磁共振成像(MRI)正常范圍:正常。檢查介紹:核磁共振成像是近年來一種新型的高科技影像學檢查方法,是80年代初才應用於臨床的醫學影像診斷新技術。它具有無電離輻射性(放射線)損害;無骨性偽影;能多方向(橫斷、冠狀、矢狀切面等)和多參數成像;高度的軟組織分辨能力;無需使用對比劑即可顯示血管結構等獨特的優點。臨床意義:適應症:神經系統的病變包括腫瘤、梗塞、出血、變性、先天畸形、感染等幾乎成為確診的手段。特別是脊髓脊椎的病變如脊椎的腫瘤、萎縮、變性、外傷椎間盤病變,成為首選的檢查方法。心臟大血管的病變;肺內縱膈的病變。腹部盆腔臟器的檢查;膽道系統、泌尿系統等明顯優於CT。對關節軟組織病變;對骨髓、骨的無菌性壞死十分敏感,病變的發現早於X線和CT。 ·脊柱MRI檢查(核磁共振檢查)正常范圍:1.椎管內腫瘤:包括髓內、髓外腫瘤、硬膜下腫瘤、髓外硬膜外腫瘤。2.脊膜膨出和脊髓脊膜膨出。3.脊髓外傷。4.硬膜外膿腫和硬膜下膿腫。5.椎管內血管畸形。6.脊髓空洞症。7.脊髓萎縮。8.椎間盤突出。9.椎管狹窄。檢查介紹:對脊柱和脊髓疾病的診斷正確率MRI明顯比CT高,病源顯示、定位準確,可作為首選的檢查方法。臨床意義:MRI比CT對疾病的診斷更有意義。·腎上腺MRI檢查(核磁共振檢查)正常范圍:1.功能性腎上腺病變:(1)原發性醛固酮增多症;(2)嗜鉻細胞瘤;(3)皮質醇增多症:(1)腎上腺皮質增生;(2)腎上腺皮質腺瘤。2.無功能性腎上腺病變:(1)無功能性腺瘤;(2)轉移瘤;(3)囊腫;(4)骨髓脂肪瘤。檢查介紹:MRI診斷腎上腺嗜鉻細胞瘤的敏感性和特異性比CT高。臨床意義:MRI比CT對疾病的診斷更有意義。·腎臟MRI檢查(核磁共振檢查)正常范圍:1.MRI能清楚地顯示腎臟,不用造影劑就可區別腎皮質與腎髓質。2.MRI能查明腫塊的位置、大小、形態、侵犯范圍;可鑒別腫塊為囊性、實質性、脂肪性,比CT敏感、定性准確。檢查介紹:MRI能查明腫塊的位置、大小、形態、侵犯范圍;可鑒別腫塊為囊性、實質性、脂肪性,比CT敏感、定性准確。臨床意義:1.MRI能清楚地顯示腎臟,不用造影劑就可區別腎皮質與腎髓質。2.MRI能查明腫塊的位置、大小、形態、侵犯范圍;可鑒別腫塊為囊性、實質性、脂肪性,比CT敏感、定性准確。3.靜脈尿路造影,MR檢查可確定病變的部位、性質或先天性發育異常。4.對腎結核的診斷優於CT。5.能較好地鑒別腎周膿腫、含尿囊腫、淋巴囊腫等。6.可判定腎臟損傷的部位、范圍、腎周血腫或尿液外滲以及術後並發症。7.無創性觀察腎移植後有無排異反應。

閱讀全文

與MRI分子成像方法有哪些相關的資料

熱點內容
台式洗眼器使用方法 瀏覽:392
一般二氧化碳檢測方法 瀏覽:12
翡翠拋光粉真假鑒別方法 瀏覽:795
如何給干核桃仁脫皮最佳方法 瀏覽:449
關於關系的研究方法有哪些 瀏覽:930
氧氟沙星滴眼液使用方法 瀏覽:561
金礦石化學分析方法 瀏覽:918
白酒發酵的方法和圖片 瀏覽:157
手機微信掙錢的方法 瀏覽:288
速成鋼膠棒的使用方法 瀏覽:954
華為橫屏設置在哪裡設置方法 瀏覽:554
筋膜炎用什麼方法檢查 瀏覽:176
真菌蘑菇稻草種植方法 瀏覽:496
胯部分離連接方法 瀏覽:942
高程測量的方法中高差計算公式 瀏覽:249
食用百合養殖方法和技巧 瀏覽:199
大數據集成分析方法 瀏覽:938
生產質量管控方法有哪些 瀏覽:306
換電腦最快方法 瀏覽:870
水蒸氣的體積計算方法 瀏覽:588