❶ 所有簡便計算的公式和方法
1、加法交換律:兩數相加交換加數的位置,和不變。2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。3、乘法交換律:兩數相乘,交換因數的位置,積不變。4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
❷ 插值法如何計算,請詳解
插值法又稱「內插法」,是利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法。如果這特定函數是多項式,就稱它為插值多項式。
例如:假設與A1對應的數據是B1,與A2對應的數據是B2,現在已知與A對應的數據是B,A介於A1和A2之間,則可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)計算得出A的數值,其中A1、A2、B1、B2、B都是已知數據。根本不必記憶教材中的公式,也沒有任何規定必須β1>β2驗證如下:根據:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:
(A1-A)=(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)
=A1+(B1-B)/(B1-B2)×(A2-A1)
59×(1+r)^-1+59×(1+r)^-2+59×(1+r)^-3+59×(1+r)^-4+(59+1250)×(1+r)^-5=1000(元)這個計算式可以轉變為59×(P/A,r,5)+1250×(P/F,r,5)=1000
當r=9%時,59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000元
當r=12%時,59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000元
因此, 現值 利率
1041.8673 9%
1000 r
921.9332 12%
(1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%)
解之得,r=10%。
❸ 鑽探技術
地熱鑽探是為勘探和開發蘊藏在地殼內部的地熱能源進行的鑽探和成井技術。根據不同的目的要求,可以鑽成不同深度的地熱鑽孔,各類地熱鑽孔的深度如表3-1。地熱鑽探主要採用石油鑽機或岩心鑽機。
表3-1 各類地熱鑽孔深度表
地熱鑽探主要特點:①鑽探中遇到的熱儲層常具有多孔性、裂隙性,屬低壓或常壓地層,極為脆弱,鑽井液易於漏失。因此,必須用清水、優質輕泥漿或空氣進行壓力平衡鑽探或減壓鑽探,以免使熱儲層被損壞。②鑽入高溫熱儲層(溫度達100~200℃)後,下入的生產套管因受熱膨脹應力的作用,可造成套管斷裂或頂裂井口地盤、套管外水泥環酥裂,釀成熱水、熱蒸氣噴發事故。故要採用套管懸掛或伸縮裝置,用加硅粉的耐高溫水泥固井,並要加固井口地盤。③孔底高溫能破壞泥漿的穩定性,使其組分分解不能發揮鑽井液的基本功能(冷卻、清洗、護壁、攜粉),故地熱超過200℃時,要用耐高溫的海泡石泥漿、高溫處理劑,還必須配備固相控制設備和冷卻塔。④防噴設備要齊全,除配齊防噴器組外,還要備10倍於井筒容積的冷水,以備用「冷水控制井噴」。⑤嚴防腐蝕和環境污染,如廢泥漿損害農田、噪音干擾,硫化氫(H2S)劇毒危及人員生命及腐蝕各類管材、配件,甲烷(CH4)氣體易失火爆炸。必須採用機械的(消聲器、分離器、面具、防噴器等)、化學的(如過氧化氫、海綿鐵)等方法予以防範。
1.鑽探方法
一般地熱井鑽探採用正循環全面鑽進、泥漿鑽井液方法。地熱鑽探採用設備和工藝方法是:淺部地熱(<1000m)基本上與水井鑽探相同;深部地熱與油井鑽探相同;地熱鑽探一般均要在井口安裝防噴器。一般地熱井,鑽井直徑最終不小於152mm。為了增加地熱能的產出,已發展了在熱儲層打定向井和分支井的技術。
2.測井
測井是對地熱井鑽孔所穿透的地層的各種特性數據記錄下來的所有作業。地熱測井工作除在鑽進、完井和試井過程中進行外,將持續到整個生產期間。常規地熱測井的參數有:連續井徑、連續井溫、電阻率、自然電位a、天然放射性γ、連續井斜、聲波補償。通過測井可以分析判斷地層的厚度和岩性、地層溫度剖面,熱儲層位置、測井曲線的連續變化,能准確地反映出地層和岩性剖面。
3.成井
指鑽孔達到了預定的深度和預期的目的而結束鑽進。成井有幾種方式:裸眼成井、襯管成井、套管成井。地熱井成井一般步驟如下:①確定生產熱水或蒸氣的地層的頂部位置;②鑽出足夠的垂直剖面,以便在現有滲透率下,出現商業性地熱水汽流;③使用特定的套管和水泥,把生產層與冷水隔離;④消除可能影響生產層滲透率的鑽井液的破壞作用;⑤如可能,用最少的費用在堅密岩層中實現裸眼完井。如果生產層是非固結或不緻密地層,則要使用射孔襯管或注水泥的套管;⑥如需要,對注水泥的套管射足夠的孔或刻凹槽;⑦安裝適當的管襯。
4.洗井
由於工程需要,在鑽井作業過程中,將洗井介質由泵注設備經井筒注入,把井筒內的物質(液相、固相、氣相)攜帶至地面,從而改變井筒內的介質性質達到作業要求。這種作業過程叫做洗井。
地熱井的洗井方法主要有浸泡洗井葯、噴射刷孔、拉活塞鹽酸、二氧化碳、壓風機和水泵抽水等。
5.抽水試驗
抽水試驗是目前確定含水層水文地質參數的主要方法。對於地熱水井來說,通過抽水試驗除可以確定水文地質參數外,還可以確定其可開采量及布井間距。根據全國礦產儲量委員會儲辦發[1996]51號文件《關於地熱單井勘查報告審批要求的通知》的規定,地熱單井可開采量一般可依據地熱井抽水試驗資料繪制的Q-f(s)曲線確定水流方程,以內插法計算確定。層狀熱儲地熱田,按最大水位下降不大於20m確定熱水井可開采量,依據該井開采可能影響區內的可采熱儲存量與熱水井開采期排放的總熱量進行熱均衡驗算,確定地熱田面積,估算熱水井的井距。因此,對地熱水井進行抽水試驗既是必要的,也是必需的。
❹ 內插法的計算
內插法在內含報酬率的計算中應用較多。內含報酬率是使投資項目的凈現值等於零時的折現率,通過內含報酬率的計算,可以判斷該項目是否可行,如果計算出來的內含報酬率高於必要報酬率,則方案可行;如果計算出來的內含報酬率小於必要報酬率,則方案不可行。一般情況下,內含報酬率的計算都會涉及到內插法的計算。不過一般要分成這樣兩種情況: 1.如果某一個投資項目是在投資起點一次投入,經營期內各年現金流量相等,而且是後付年金的情況下,可以先按照年金法確定出內含報酬率的估計值范圍,再利用內插法確定內含報酬率
2.如果上述條件不能同時滿足,就不能按照上述方法直接求出,而是要通過多次試誤求出內含報酬率的估值范圍,再採用內插法確定內含報酬率。
下面舉個簡單的例子進行說明:
某公司現有一投資方案,資料如下:
初始投資一次投入4000萬元,經營期三年,最低報酬率為10%,經營期現金凈流量有如下兩種情況:(1)每年的現金凈流量一致,都是1600萬元;(2)每年的現金凈流量不一致,第一年為1200萬元,第二年為1600萬元,第三年為2400萬元。
問在這兩種情況下,各自的內含報酬率並判斷兩方案是否可行。
根據(1)的情況,知道投資額在初始點一次投入,且每年的現金流量相等,都等於1600萬元,所以應該直接按照年金法計算,則
NPV=1600×(P/A,I,3)-4000
由於內含報酬率是使投資項目凈現值等於零時的折現率,
所以令NPV=0
則:1600×(P/A,I,3)-4000=0
(P/A,I,3)=4000÷1600=2.5
查年金現值系數表,確定2.5介於2.5313(對應的折現率i為9%)和2.4869(對應的折現率I為10%),可見內含報酬率介於9%和10%之間,根據上述插值法的原理,可設內含報酬率為I,
則根據原公式:
(i2-i1)/(i-i1)=( β2-β1)/( β-β1).
i2 =10%,i1=9%,則這里β表示系數,β2=2.4689,β1=2.5313,
而根據上面的計算得到β等於2.5,所以可以列出如下式子:
(10%-9%)/(I-9%)=(2.4689-2.5313)/(2.5-2.5313),解出I等於9.5%,因為企業的最低報酬率為10%,內含報酬率小於10%,所以該方案不可行
根據(2)的情況,不能直接用年金法計算,而是要通過試誤來計算。 這種方法首先應設定一個折現率i1,再按該折現率將項目計算期的現金流量折為現值,計算出凈現值NPV1;如果NPV1>0,說明設定的折現率i1小於該項目的內含報酬率,此時應提高折現率為i2,並按i2重新計算該投資項目凈現值NPV2;如果NPV1<0,說明設定的折現率i1大於該項目的內含報酬率,此時應降低折現率為i2,並按i2重新將項目計算期的現金流量折算為現值,計算凈現值NPV2。
經過上述過程,如果此時NPV2與NPV1的計算結果相反,即出現凈現值一正一負的情況,試誤過程即告完成,因為零介於正負之間(能夠使投資項目凈現值等於零時的折現率才是財務內部收益率),此時可以用插值法計算了;但如果此時NPV2與NPV1的計算結果符號相同,即沒有出現凈現值一正一負的情況,就繼續重復進行試誤工作,直至出現凈現值一正一負。本題目先假定內含報酬率為10%,則:
NPV1=1200×0.9091+1600×0.8264+2400×0.7513-4000=216.8萬
因為NPV1大於0,所以提高折現率再試,設I=12%, NPV2=1200×0.8929+1600×0.7972+2400×0.7118-4000=55.32萬
仍舊大於0,則提高折現率I=14%再試,NPV3=1200×0.8772 +16000×7695+2400×0.6750-4000=-96.19萬
現在NPV2 >0,而 NPV3<0(注意這里要選用離得最近的兩組數據),所以按照內插法計算內含報酬率,設i2 =14%,i1=12%,則 β2=-96.19,β1=55.32,β=0根據
(i2-i1)/(i-i1)=( β2-β1)/( β-β1)
有這樣的方程式:(14%-12%)/(i-12%)=(-96.19-55.32)/(0-55.329)
解得I=12.73%,因為大於必要報酬率,所以該方案可以選擇。 某公司現有兩個投資項目,其中
A項目初始投資為20000,經營期現金流入分別為:第一年11800,第二年13240,第三年沒有流入;
B項目初始投資為9000,經營期現金流入分別為:第一年1200,第二年6000,第三年6000;
該公司的必要報酬率是10%,如果項目A和B是不相容的,則應該選擇哪個方案?
根據本題目,初始差額投資為:
△NCF0=20000-9000=11000萬
各年現金流量的差額為:
△NCF1=11800-1200=10600萬
△NCF2=13240-6000=7240萬
△NCF3=0-6000=-6000萬
首先用10%進行測試,則NPV1=10600×0.9091+7240×0.8264+(-6000)×0.7513-11000=117.796萬
因為NPV1>0,所以提高折現率再試,設I=12%,則有NPV2=10600×0.8929+7240×0.7972+(-6000)×0.7118-11000=-34.33萬
現在NPV1>0,而NPV2<0(注意這里要選用離得最近的兩組數據),所以按照內插法計算內含報酬率。
設i2 =12%,i1=10%,則 β2=-34.33,β1=117.796,β=0,則根據(i2-i1)/(i-i1)=( β2-β1)/( β-β1),有這樣的方程式:
(12%-10%)/(I-12%)=(-34.33-117.796)/(0-117.796),解得I=11.54%,因為大於必要報酬率,所以應該選擇原始投資額大的A方案。 除了將插值法用於內含報酬率的計算外,在計算債券的到期收益率時也經常用到。如果是平價發行的每年付息一次的債券,那麼其到期收益率等於票面利率,如果債券的價格高於面值或者低於面值,每年付息一次時,其到期收益率就不等於票面利率了,具體等於多少,就要根據上述試誤法,一步一步測試,計算每年利息×年金現值系數+面值×復利現值系數的結果,如果選擇的折現率使得計算結果大於發行價格,則需要進一步提高折現率,如果低於發行價格,則需要進一步降低折現率,直到一個大於發行價格,一個小於發行價格,就可以通過內插法計算出等於發行價格的到期收益率。總的來說,這種內插法比較麻煩,教材上給出了一種簡便演算法: R=[I+(M-P)÷N]/[(M+P)÷2]
這里I表示每年的利息,M表示到其歸還的本金,P表示買價,N表示年數。例如某公司用1105元購入一張面額為1000元的債券,票面利率為8%,5年期,每年付息一次,則債券的到期收益率為:
R= [80+(1000-1105)÷5]/[(1000+1105)÷2]=5.6%
可以看出,其到期收益率與票面利率8%不同,不過這種簡便做法在考試時沒有作出要求,相比較而言,對於基本的內插法,大家一定要理解並學會運用。
❺ 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
❻ 簡便計算方法
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道題目中,利用第一種方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等於5100加上2200等於6300
❼ 簡便計算方法有哪些
加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
乘法交換律:a*b=b*a
乘法結合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
綜合算式(四則運算)應當注意的地方:
1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
(7)固井內插法的簡便計算方法擴展閱讀:
從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。
幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。
❽ 簡便計算的方法和技巧
簡便的計算方式的話,只要有幾種
主要就是湊整法
❾ 最簡單的內插法公式
(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直線斜率,變換即得所求。
內插法即直線插入法。其原理是若A(i1,b1),B(i2,b2)為兩點,則點P(i,b)在上述兩點確定的直線上。而工程上常用的為i在i1,i2之間,從而P在點A、B之間,故稱直線內插法。
內插法說明點P反映的變數遵循直線AB反映的線性關系,上述公式易得。A、B、P三點共線,則(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直線斜率,變換即得所求。
(9)固井內插法的簡便計算方法擴展閱讀:
注意事項:
插值法的原理是根據等比關系建立一個方程,然後解方程計算得出所要求的數據。
折現率越大,現值越小,折現率越小,現值越大。
當計算的數值小於0(給定的值)時,應該使用小的折現率再試,相反當計算的數值小大於0(給定的值)時,應該使用大的折現率再試。