1、十位數是1的兩位數相乘
乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。
2、個位是1的兩位數相乘
十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。
3、十位相同個位不同的兩位數相乘
被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。
4、首位相同,兩尾數和等於10的兩位數相乘
十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。
5、首位相同,尾數和不等於10的兩位數相乘
兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
⑵ 口算的方法和技巧
首先運用直觀表象助口算
其次採用理清算理助口算
最後運用說理訓練助口算
⑶ 口算教學方法
根據以往從事低年級數學教學實踐,談談自己進行口算教學的認識和方法。
1、口算教學的認識
其實有的小孩在沒有上學之前,就已經很會口算,而且算得又對又快。有的小孩帕蒙,叫他口算會躲在大人背後。我孩提時,在農村經常能看到這一幕,小孩口算算得快,得到誇,不會算嫌成渣。大量事實證明,小孩最天真,也最純真。口算算得出來,就會很快報出得數,並露出燦爛的笑臉。算不出來就會馬上說算不來,且顯出焦慮的丑相。我們都知道小孩不會瞧三搞四,也可說在社會上還沒有染上這種惡習。
為什麼要進行口算教學?就是看到了口算在實際生活生產中佔有一席之地,是生活中不可或缺的部分,在工作中經常需要。
近幾年口算主要出現在一年級、二年級、三年級的數學教學中,口算題主要出現在這三個年級的課本上。就一年級數學而言,口算是學生學完老師教完1—5的認識才開始的。按課本上的教學程序,老師必須進行以下內容的教學,為口算作先鋒,做前沿。
一、數出10以內的數。可指導學生數掛圖上的房子有幾座?紅旗有幾面?人有幾個?小雞有幾只?……。
二、分類。就是把同類物品放在一起。豬、馬、牛、羊是動物類,花生、玉米、豆角、紅薯是植物類。
三、同樣多。舉一個每人身上都有的例子,便於學生理解掌握。數自己兩只手的手指,得出右手和左手的手指同樣多,都是五個。
四、認識1—5每個數所表示的實際數量、數序、數的組成。這是口算教學之前的教學主要內容,也是重要內容,特別是數的組成。學生必須正確說出2—5的組成,舉一個例子,5可以分成1和4;5可以分成2和3;5可以分成4和1;5可以分成3和2。
五、認識符號「=」、「>」、「<」。一定要學生記住這三種符號的名字,分別是等於號,大於號,小於號,對比較兩個數的大小有作用。
六、了解加、減法的含義。加法是一添再添,減法是一少再少。
有了以上的知識作鋪墊,學生才不會對口算算式的出現感到突然迷茫,口算才會迅速正確。口算題有加法口算題、減法口算題、乘法口算題、除法口算題。加減乘除混合口算題。
⑷ 口算的方法
這里為大家介紹幾種簡單的數學口算方法,口訣很重要哦
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:13×15=? 解: 1×1=1 3+5=8 3×5=15 13×15=195
註:個位相乘,不夠兩位數要用0佔位
2.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=? 解:2+3=5 3+1=4
1+2=3 2+5=7
2和5分別在首尾 11×23125=254375 註:和滿十要進一。
3.十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=? 解:13個位是3 3×3+2=11 3×2+6=12 3×6=18
13×326=4238
註:和滿十要進一。
⑸ 口算的三種方法
形象口演算法形象口演算法具有計算速度快的特點,不僅有利於培養學生的記憶力,而且有利於訓練學生思維的敏捷性.如「20以內的退位減法」計算
⑹ 二年級口算方法有幾種
方法 1. 兩位數加兩位數的進位加法:
口訣:加9要減1,加8要減2,加7要減3,加6要減4,加5要減5,加4要減6,加3要減7,加2要減8,加1要減9。(註:口決中的加幾都是說個位上的數)
例:26+38=64 解 :加8要減2,誰減2?26上的6減2。38里十位上的3要進4。
(註:後一個兩位數上的十位怎麼進位,是1我進2,是2我進3,是3我進4,依次類推。那朝什麼地方進位呢,進在第二個兩位數上十位上。如本次是3我進4,就是這兩個兩位數里的2+4=6。)這里的26+38=64就是6-2=4寫在個位上,是3進4加2就等於6寫在十位上。
再如42+29=71。就用加9要減1這句口決,2-1=1,把1寫在個位上,是2我進3,4+3=7,把7寫在十位上即得71。
兩位數加兩位數不進位的加法,就直接寫得數就行,如25+34=59,個位加個位寫在等號後的個位上5+4=9,十位加十位寫在十位上即可2+3=5,即59。不必列豎式計算。
本辦法學會了百試百靈,比計算器還快。
方法2.兩位數減兩位數的退位減法。
口訣: 減9要加1,減8要加2,減7要加3,減6要加4,減5要加5,減4要加6,減3要加7,減2要加8,減1要加9。(註:口決中的減幾都是說減個位上的數)。
例:73-46=27,解:減6要加4,誰加4?3加4等於7寫在個位上,減數的十位是4我退5,誰退5?7退5,即27。
(註:如何退位?減數的十位是1你退2,是2你退3,是3你退4,依次類推,但必須是個位減個位不夠減的情況才能這樣退,夠減就直接個位減個位,十位減十位直接定出得數即可。)
以上兩種方法是利用了一年級教材中的湊十法演變而來的。它們的口決大體一致,只需記住了其中的一種,另一種方法即可融會貫通。
同學們都學會了嗎,下面是80道100以內加減法的口算計算題,來試試吧!
⑺ 口算算術最好方法有哪些
天天練習
⑻ 能快速口算的技巧有哪些方法
一、一種做多位乘法不用豎式的方法.我們都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168.其中有趣的規律:即個位上的數字正好是兩個因數個位數字的積.十位上的數字是兩個數字個位上的和.百位上的數字是兩個因數十位數字的積.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾.~例如:
14X16=224 4=4X6的個位 2=2+4+6 2=1+1X1 試著做做看下面的題:
12X15= 11X13= 15X18= 17X19=二、幾十一乘以幾十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積.「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1 就一定正確.我們來看兩個算式:21×61=41×91= 用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這種速算方法直接寫得數時的思維過程.第一個算式,21×61=?思維過程是:2×6=12,2+6=8, 21×61 就等於1281.第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731. 試試上面題目吧!然後再看看下面幾題 61×91= 81×81= 31×71= 51×41=一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾數相乘2X3=6 (2)被乘數加上乘數的尾數12+3=15 (3)把兩計算結果相連即為所求結果【例2】 1 5X 1 5------------2 2 5(1)尾數相乘5X5=25(滿十進位)(2)被乘數加上乘數的尾數15+5=20,再加上個位進上的2即20+2=22(3)把兩計算結果相連即為所求結果二、兩位數、三位數乘法及乘方速算a.首數相同,尾數相加和是十的兩位數乘法 方法:尾數相乘,首數加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾數相乘4X6=24直接寫在十位和個位上(2)首數5加上1為6,兩首數相乘6X5=30(3)把兩結果相連即為所求結果【例2】 7 5X 7 5----------5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數7加上1為8,兩首數相乘8X7=56(3)把兩計算結果相連即可b.尾數是5的三位數乘方速算方法:尾數相乘,十位數加一,再將兩首數相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數12加上1為13,再兩數相乘13X12=156(3)兩計算結果相連c.任意兩位數乘法方法:尾數相乘,對角相乘再相加,首數相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾數相乘7X2=14(滿十進位)(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)(3)首數相乘3X6=18加上十位進上的4為18+4=22(4)把計算結果相連即為所求結果b.任意兩位數及三位平方速算方法:尾數的平方,首數乘尾數擴大2倍,首數的平方[例] 2 3X 2 3---------5 2 9 (1)尾數的平方3X3=9(滿十進位)(2)首尾數相乘2X3=6擴大兩倍為12寫在十位上(滿十進位)(3)首數的平方2X2=4加上十位進上的1為5(4)把計算結果相連即為所求結果c.三位數的平方與兩位數的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾數的平方2X2=4寫在個位(2)首尾數相乘13X2=26擴大2倍為52寫在個位上(滿十進位)(3)首數的平方13X13=169加上十位進上的5為174(4)把計算結果相連即為所求結果〖注意:三位數的首數指前兩位數字!〗三、大數的平方速算方法:把題目與100相差,相差數稱之為差數;先算差數的平方寫在個位和十位上(缺位補零),再用題目減去差數得一結果;最後把兩結果相連即為所求結果【例】 9 4X 9 4-----------8 8 3 6(1)94與100相差為6(2)差數6的平方36寫在個位和十位上(3)用94減去差數6為88寫在百位和千位上(4)把計算結果相連即為所求結果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能夠很快算出這些算式的正確答案嗎?注意,是很快哦!你能嗎?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神氣吧!速算秘訣:(就以第一題為例好啦)(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘.[5×(5+1)]=30;(2)再將末尾數相乘的得數寫在後面就可以得出正確的答案了.5×5=25;(3)3025!Bingo!其它依次類推就行了.仔細看每一個式子里的兩位數的十位是相同的,而個位的兩數則是相補的.這樣的速算秘訣只能夠適用於這種情況的算式.所以說大家千萬不要把巧算和真正的速算混淆在一起,真正的速算是任何數都能算的.一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我們再做一些復雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9.
這樣我們能不能找到一種簡便的演算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9同樣的方法你們可以拆出下面的數,也可以背口訣27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了.
上面我們的計算好象很麻煩,其實現在總結一下就簡單了.