『壹』 求積分的方法總結高數
積分是微積分學與數學分析里的一個核心 概念。通常分為定積分和不定積分兩種。
求定積分的方法有換元法、對稱法、待定 系數法等;求不定積分的方法有換元法和 分部積分法。
分部積分法是微積分學中的一類重要的、基本的計算積分的方法。它是由微分的乘法法則和微積分基本定理推導而來的。它的主要原理是將不易直接求結果的積分形式,轉化為等價的易求出結果的積分形式的。
換元法是指引入一個或幾個新的變數代替原來的某些變數的變數求出結果之後,返回去求原變數的結果。
換元法通過引入新的元素將分散的條件聯系起來,或者把隱含的條件顯示出來,或者把條件與結論聯系起來,或者變為熟悉的問題.其理論根據是等量代換。
『貳』 大學物理第一章的,定積分怎麼求啊
由於函數概念的產生和運用的加深,也由於科學技術發展的需要,一門新的 數學分支就繼解析幾何之後產生了,這就是微積分學.微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造.一個定積分的計算,首先要求准確性,其次是快速性,而這兩個目的的實現就需要有好的方法和技巧.本文主要以求解定積分的各種方法為主線,對其分別概述,舉例,並加以分析說明,從而得出對於不同的題型應當運用合適的方法來解決的結論.學習中應著眼於基本方法的積累,有了這種積累,才會孕育出技巧。
1 定義法求定積分
1.1 定義法
已知函數在上可積,由於積分和的極限唯一性,可做的一個特殊分法(如等分法等),在上選取特殊的(如取是的左端點、右端點、中點等),做出積分和,然後再取極限,就得函數在的定積分.
1.2 典型例題
例1 求,
解因為函數在上連續,所以函數在上可積,採用特殊的方法作積分和.
取,將等分成個小區間,
分點坐標依次為
取是小區間的右端點,即,於是,
,
其中,
=
=
將此結果代入上式之中,有
從上面的例題可見,按照定積分的定義計算定積分要進行復雜的計算,在解題時不常用,但它也不失為一種計算定積分的方法.
2 換元法求定積分
2.1 換元積分法
換元積分法就是在積分過程中通過引入變數來簡化積分計算的一種積分方法.通常在應用換元積分法求原函數的過程中,也相應的變換積分的上下限,這樣可以簡化計算.
設在上連續,滿足
(1)且;
(2)存在並在上可積.則
上述條件(1)是保證被積函數的取值不致越出積分區間.換元的簡單情況就是湊微分法,同時,它也是其他方法的基礎和優先思路.通常在應用換元積分法求原函數的過程中,也相應變換積分上下限,這樣可以簡化計算.
利用換元法的關鍵在於選擇恰當的變換方式,否則可能使變換後的積分更加復雜,難以計算,然而我們沒有一般的原則,只能依據被積函數的特點來確定.
2.2 典型例題
例2 求
解應用定積分換元積分公式
設,當時,;當時,
.
顯然,上述計算方法使用定積分換元公式簡便,從而體現了換元積分法的優越性.
例3求
解設當時,;當時,
所以,
則,
所以,
則,
『叄』 求這個定積分,求詳細解答過程
1、這個定積分,詳細解答過程建見上圖。
2、求這個定積分,求解詳細過程中最關鍵的一步,就是在求這個定積分時,用分部積分公式。圖中第三個等號。
3、求這個定積分的第一步:
三角函數變形,即圖中第一行。
4、求這個定積分,詳細過程的第二步:
用定積分的分部積分公式,圖中第二、第三行。
5、其中圖中第三行的定積分用湊微分的方法,即換元法,可以積分出來。
具體的求這個定積分,詳細過程的步驟及說明見上。
『肆』 高中定積分的計算方法
∫(2,4)(-3)dx=(-3x)|(2,4)=(-3*4)-(-3*2)=-6
∫[0,1]x∧2dx=(1/3x^3)|(0,1)=1/3-0=1/3
計算定積分時,應該運用牛頓-萊布尼茨公式:如果函數f(x)在區間(a,b)上連續,並且存在原函數F(x),則
(4)定積分怎麼求解題方法擴展閱讀
定積分是積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。
這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有。
一個函數,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函數,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函數一定不存在,即不定積分一定不存在。
『伍』 求解定積分的各種方法
要知道:解定積分沒捷徑可走,只有基本方法和特殊方法
解題還主要是用牛頓-萊布尼茲公式
,所以最好熟練不定積分的公式運用
『陸』 定積分求解詳細步驟
第一步:仔細讀題,確定好以哪條軸為基準軸
第二步:求解曲邊形的原理就是把邊變得很小,求長方形面積,然後積分求得
所以寫出一個微分面積:X∫(X) 根據長方形面積長乘以寬得到
第三步:就是在求微分了。
『柒』 定積分求解,要詳細步驟,多謝!
你好!
這個需要用分部積分的方法來求解:
∫(0→1)x²e^(x/2)dx=∫(0→1)2x²d[e^(x/2)]=2x²e^(x/2)|(0→1)+2∫(0→1)e^(x/2)dx²,
上式2x²e^(x/2)|(0→1)=2√e-0=2√e;
2∫(0→1)e^(x/2)dx²=4∫(0→1)xe^(x/2)dx=16∫(0→1)(x/2)e^(x/2)d(x/2),
令t=x/2,則t∈[0,1/2],
所以16∫(0→1)(x/2)e^(x/2)d(x/2)=16∫(0→1)te^tdt=16(te^t-e^t)|(0→1/2)=16-8√e,
所以原式=2√e+16-8√e=16-6√e.
過程比較多,計算不敢保證,不過方法就是這樣的!
謝謝採納!
『捌』 求定積分有幾種方法
對應不定積分有初等函數解的,即可以積出來的,先積出原函數後就沒什麼問題。
對應不定積分無初等函數解的。要說具體技巧多了,那隻能就題論題,我只能說說思考方向。
1.考慮對稱性,利用對稱性抵消一部分,剩下一般為簡單部分。
2.考慮區間的特殊性,利用換元構造方程。比如0到π/2,f(sinx)與f(cosx)的積分相等,就是換元t=π/2-x後得到的。
3.由定積分的性質拆分區間構造方程。
4.轉化為二重積分,交換積分次序後,中間步驟可能會積出原函數。比如0到無窮,[e^(-2x)-e^(x)]/x的積分,可以轉化為∫[]0+,∞]dx∫[1,2]e^(-xy)/xdy,先對y積分,則e^(-xy)/x對y可以積出。
5.對於無窮或者半無窮區間的,一般可以用留數法、構造收斂因子、傅立葉變換、拉普拉斯變換等,這些相對比較難了。
6.對於特殊區間,經過換元轉化為[0,1]上的積分,用冪級數展開,逐項積分,最後求級數收斂值。
我能想到的只有這么多了。
以上均為求精確解,一般區間對於積不出的情況,只有用數值分析近似求解了。
『玖』 定積分一般解題思路與方法。
如果是高數題的話一般就是湊微分,利用牛頓萊布尼茲公式求原函數;還有就是分部積分也是很常用的。如果是復變函數的話有柯西公式留數定理等。還是需要多看例題,多實踐。