㈠ 岩土工程勘察 6.岩體結構的基本類型有哪些
按結構面和結構體組合形式,尤其是結構面性狀,可將岩體劃分如下結構類型:①整體塊狀結構,包括整體(斷續)結構、塊狀結構和菱塊狀結構;②層狀結構,包括層狀結構和薄層(板狀)結構;③碎裂結構,包括鑲嵌結構、層狀碎裂結構和碎裂結構;④散體結構,包括塊夾泥結構和泥夾塊結構;⑤ 塊狀結構等。
㈡ 岩石工程分級的目的和意義是什麼,常用哪些表示方法
按成因不同,將岩石分為岩漿岩、沉積岩、變質岩三類,對於採掘工程來說,又要求對岩石進行定量的區分,以便能正確地進行工程設計,合理地選用施工方法、施工設備、機具與器材,准確地制定生產定額和材抖消耗定額等。普氏分級法
,根據錨噴支護需要,按照煤礦岩層特點制定的圍岩分類岩芯質量指標分級法(R
.Q
.D
)
㈢ 岩土體的工程地質分類和鑒定
一、岩體
(一)岩體(岩石)的基本概念岩體(岩石)是工程地質學科的重要研究領域。岩石和岩體的內涵是有區別的兩個概念,又是密不可分的工程實體。在《建築岩土工程勘察基本術語標准》(JG J84-92)中給出的岩石定義是:天然產出的具有一定結構構造的單一或多種礦物的集合體。岩石的結構是指岩石組成物質的結晶程度、大小、形態及其相互關系等特徵的總稱。岩石的構造是指岩石組成物質在空間的排列、分布及充填形式等特徵的總稱。所謂岩體,就是地殼表部圈層,經建造和改造而形成的具有一定岩石組分和結構的地質體。當它作為工程建設的對象時,可稱為工程岩體。岩石是岩體內涵的一部分。
岩體(岩石)的工程分類,可以分為基本分類和工程個項分類。基本分類主要是針對岩石而言,根據其地質成因、礦物成分、結構構造和風化程度,用岩石學名稱加風化程度進行分類,如強風化粗粒黑雲母花崗岩、微風化泥質粉砂岩等。岩石的基本分類,在本書第一篇基礎地質中有系統論述。工程個項分類,是針對岩體(岩石)的工程特點,根據岩石物理力學性質和影響岩體穩定性的各種地質條件,將岩體(岩石)個項分成若干類別,以細劃其工程特徵,為岩石工程建設的勘察、設計、施工、監測提供不可缺少的科學依據,使工程師建立起對岩體(岩石)的明確的工程概念。岩石按堅硬程度分類和按風化程度分類即為工程個項分類。
在岩體(岩石)的各項物理力學性質中,岩石的硬度是岩體最典型的工程特性。岩體的構造發育狀況體現了岩體是地質體的基本屬性,岩體的不連續性及不完整性是這一屬性的集中反映。岩石的硬度和岩體的構造發育狀況是各類岩體工程的共性要點,對各種類型的工程岩體,穩定性都是最重要的,是控制性的。
岩石的風化,不同程度地改變了母岩的基本特徵,一方面使岩體中裂隙增加,完整性進一步被破壞;另一方面使岩石礦物及膠結物發生質的變化,使岩石疏軟以至鬆散,物理力學性質變壞。
(二)岩石按堅硬程度分類
岩石按堅硬程度分類的定量指標是新鮮岩石的單軸飽和(極限)抗壓強度。其具體作法是將加工製成一定規格的進行飽和處理的試樣,放置在試驗機壓板中心,以每秒0.5~1.0M Pa的速度加荷施壓,直至岩樣破壞,記錄破壞荷載,用下列公式計算岩石單軸飽和抗壓強度:
深圳地質
式中:R為岩石單軸飽和抗壓強度,單位為MPa;p為試樣破壞荷載,單位為N;A為試樣截面積,單位為mm2。
對岩石試樣的幾何尺寸,國家標准《工程岩體試驗方法標准》(GB/T50266-99)有明確的規定,試樣應符合下列要求:①圓柱體直徑宜為48~54mm;②含大顆粒的岩石,試樣的直徑應大於岩石的最大顆粒尺寸的10倍;③試樣高度與直徑之比宜為2.0~2.5。
在此標准發布之前,岩石抗壓強度試驗的試樣尺寸要求如下:極限抗壓強度大於75M Pa時,試樣尺寸為50mm×50mm×50mm立方體;抗壓強度為25~75MPa時,試樣尺寸為70mm×70mm×70mm立方體;抗壓強度小於25MPa時,試樣尺寸為100mm×100mm×100mm立方體。
(G B/T 50266-99)的規定顯然是為了方便取樣,以金剛石鑽頭鑽探,取出的岩心進行簡單的加工,即可成為抗壓試樣。岩樣的尺寸效應對岩石抗壓強度是略有影響的。
岩石按堅硬程度分類,各行業的有關規定,雖然各自表述方式有所區別,但其標準是基本一致的(表2-2-1)。
表2-2-1 岩石堅硬程度分類
除了以單軸飽和抗壓強度這一定量指標確定岩石堅硬程度外,尚可按岩性鑒定進行定性劃分。國標:建築地基基礎設計規范(GB50007-2002)按表2-2-2進行岩石堅硬程度的定性劃分。其他規范的劃分標准大同小異。
表2-2-2 岩石堅硬程度的定性劃分
岩石堅硬程度的劃分,無論是定量的單軸飽和抗壓強度,還是加入了風化程度內容的定性標准,都是用於確定小塊岩石的堅硬程度的。岩石的單軸飽和抗壓強度是計算岩基承載力的重要指標。
(三)岩石按風化程度分類
關於岩石風化程度的劃分及其特徵,國家規范和各行業的有關規范中均有規定,其分類標准基本一致,表述略有差異。表2-2-3至表2-2-10是部分規范給出的分類標准。
表2-2-3《工程岩體分級標准》(GB50218-94)岩石風化程度劃分表
表2-2-4《岩土工程勘察規范》(GB50021-2001)岩石按風化程度分類表
續表
表2-2-5《公路橋涵地基與基礎設計規范》(JTJ024-85)岩石風化程度劃分表
表2-2-6《水利水電工程地質勘察規范》(GB50287-99)岩體風化帶劃分表
《港口工程地質勘察規范》(JTJ240-97)、《港口工程地基規范》(JTJ250-98)岩體風化程度的劃分按硬質、軟質岩體來劃分,硬質岩石岩體風化程度按表2-2-7劃分。軟質岩石岩體風化程度按表2-2-8劃分。
表2-2-7 硬質岩石岩體風化程度劃分表
表2-2-8 軟質岩石岩體風化程度劃分表
表2-2-9《地下鐵道、輕軌交通岩土工程勘察規范》(GB5037-1999)岩石風化程度分類表
續表
表2-2-10 廣東省《建築地基基礎設計規范》(DBJ15-31-2003)岩石風化程度劃分表
國家標准《建築地基基礎設計規范》(GB5007-2002)對岩石的風化只有第4.1.3條作如下敘述:岩石的風化程度可分為未風化、微風化、中風化、強風化和全風化。未列表給出風化特徵,但在岩石堅硬程度的定性劃分中(表A.0.1)把不同風化程度的岩石歸類到了岩石堅硬程度的類別中。
深圳市標准:《地基基礎勘察設計規范》(報批稿)關於岩石風化程度的劃分標准,基本採用了《地下鐵道、輕軌交通岩土工程勘察規范》GB(50307-1999)的表述形成和內容(表2-2-9),文字略有調整。
縱觀各類規范對岩石風化程度的劃分,可以看出:
1)除個別規范未列出未風化一類外,岩石風化程度的劃分均為未風化、微風化、中等(弱)風化、強風化和全風化。特徵描述簡繁不一,中等風化與弱風化相對應的風化程度略有差別。
2)風化程度的特徵描述,主要是岩石的結構構造變化、節理裂隙發育程度、礦物變化、顏色變化、錘擊反映、可挖(鑽)性等方面來定性劃定。部分規范用波速和波速比及風化系數來定量劃定是對岩石風化程度確定的有力支撐。
3)從新鮮母岩到殘積土的風化過程是連續的,有些規范把殘積土的特徵描述放在岩石風化程度劃分表中,有一定的道理。國際標准:ISO/TC182/SC,亦將風化程度分為五級,並列入了殘積土。從工程角度考慮,殘積土對母岩而言已經發生了全面質的變化,物理力學性質和對它的理論研究已屬松軟土,表中對殘積土特徵的表述對區別殘積土與全風化岩是有現實意義的。
4)國家標准:《工程岩體分級標准》中「岩石風化程度的劃分」(表2-2-3)看似簡單,規范「條文說明」解釋了這一現象,表2-2-3關於岩石風化程度的劃分和特徵的描述,僅是針對小塊岩石,為表2-2-2服務的,它並不代表工程地質中對岩體風化程度的定義和劃分。表2-2-2是把岩體完整程度從整個地質特徵中分離出去之後,專門為描述岩石堅硬程度作的規定,主要考慮岩石結構構造被破壞,礦物蝕變和顏色變化程度,而把裂隙及其發育情況等歸入岩體完整程度這另一個基本質量分級因素中去。
5)上述列表中可以看出,某些規范把硬質岩石和軟質岩石的風化程度劃分區別開來,而《工程岩體分級標准》中「岩石堅硬程度的定性劃分」表(2.2-2)將風化後的硬質岩劃入軟質岩中。這里有兩個概念不可混淆:一是從工程角度看,硬質岩石風化後其工程性質與軟質岩相近,可等同於軟質岩;二是新鮮岩石中是存在軟質岩的,如深圳的泥質砂岩、泥岩、頁岩等。
6)相鄰等級的風化程度其界線是漸變的、模糊的,有時不一定能劃出5個完整的等級,如碳酸鹽類岩石。在實際工作中要按規范的標准,綜合各類信息,結合當地經驗來判斷岩石的風化等級。
(四)岩體的結構類型
在物理學、化學及其地質學等學科中對「結構」這一術語的概念是明確的,但有各自的含義,如原子結構、分子結構、晶體結構、礦物結構、岩石結構、區域地質結構、地殼結構等等,岩體作為工程地質學的一個主要研究對象,提出「岩體結構」術語的意義是十分明確的。
岩體結構有兩個含義,可以稱之為岩體結構的兩個要素:結構面和結構體。結構面是指層理、節理、裂隙、斷裂、不整合接觸面等等。結構體是岩體被結構面切割而形成的單元岩塊和岩體。結構體的形狀是受結構面的組合所控制的。
事實上,所有與岩石有關的工程,除建築材料外,都是與有較大幾何尺寸的岩體打交道,岩石經過建造成岩(岩漿岩的浸入,火山岩的噴出,沉積岩的層狀成沉積,變質岩的混合與動力變質)及後期的改造(褶皺、斷裂、風化等),使得岩體的完整性遭到了巨大的破壞,成為了存在大量不同性質結構面的現存岩體。為了給工程界一個明朗的技術路線,不妨以建造性結構面和改造性結構面(軟弱結構面)為基礎,從各自側面首先對岩體結構基本類型進行研究,其次將兩方面的成果加以綜合,即可得出關於岩體結構基本類型的完整概念(圖2-2-1)。
(1)以建造性結構面為主的岩體結構基本類型的劃分(表2-2-11)
表2-2-11 建造性結構面的岩體結構分類
(2)以改造性結構面(軟弱結構面)為主的岩體結構類型的劃分(表2-2-12)
表2-2-12 改造結構面為主的岩體結構分類
圖2-2-1 岩體結構示意圖
(3)由建造性結構面和改造性結構面形成的三維岩體
三維岩體表現出了復雜多變的岩體結構特徵,將其綜合歸納,形成了較系統的岩體結構類型(表2-2-13)。
表2-2-13 岩體結構類型及其特徵
表中表述的岩體結構類型及其特徵基本上涵蓋了深圳地區岩體的全部結構類型。
(4)岩體完整程度的劃分
地質岩體在建造和改造的過程中,岩體被風化、被結構面切割,使其完整性受到了不同程度的破壞。岩體完整程度是決定岩體基本質量諸多因素中的一個重要因素。影響岩體完整性的因素很多,從結構面的幾何特徵來看,有結構面的密度,組數、產狀和延展程度,以及各組結構面相互切割關系;從結構面形狀特徵來看,有結構面的張開度、粗糙度、起伏度、充填情況、水的賦存等。從工程岩體的穩定性著眼,應抓住影響穩定性的主要方面,使評判劃分易於進行。在國標:《工程岩體分級標准》(GB50218-94)中,規定了用結構面發育程度、主要結構的結合程度和主要結構面類型作為劃分岩體完整程度的依據,以「完整」到「極破碎」的形象詞彙來體現岩體被風化、被切割的劇烈變化完整程度(表2-2-14)。
表2-2-14 岩體完整程度的定性分類表
在1994版的《岩土工程勘察規范》中,未見此表。很明顯,此表在《工程岩體分級標准》中出現後,在2001版修訂後的《岩土工程勘察規范》中得到了確認和使用。
(五)岩體基本質量分級
自然界中不同結構類型的岩體,有著各異的工程性質,岩石的硬度、完整程度是決定岩體基本質量的主要因素。在工程實踐中,系統地認識不同質量的工程岩體,針對其特徵性採取不同的設計思路和施工方法是科學進行岩體工程建設的關鍵。
1994年,國家標准《工程岩體分級標准》(50218-94)給出了岩體基本質量分級的標准(表2-2-15)。在此之前發布的國家標准《岩土工程勘察規范》(GB50021-94),該表是作為洞室圍岩質量分級標準的。在2001年修訂的《岩土工程勘察規范》(GB50021-2001)中,岩體基本質量分級以表2-2-15的形式來分類,岩體基本質量等級按表2-2-16分類。
表2-2-15 岩體基本質量分級
表2-2-16 岩體基本質量等級分類
(六)岩體圍岩分類
地鐵、公路、水電、鐵路以及礦山工程等行業,均有地下洞室和隧道(巷道)開挖,工程勘察均需對工程所處的圍岩進行分類。不同的規范對圍岩的分類方法略有不同。
1.隧道圍岩
《地下鐵道、輕軌交通岩土工程勘察規范》(GB50307-1999)和《公路工程地質勘察規范》(JTJ064-98)規定,隧道圍岩分類按表2-2-17劃分。
表2-2-17 隧道圍岩分類
續表
2.圍岩工程地質
《水利水電工程地質勘察規范》(GB50287-99)規定,在地下洞室勘察時,應進行圍岩工程地質分類。分類應符合表2-2-18規定。
表2-2-18 圍岩工程地質分類
上表中的圍岩總評分T為岩石強度、岩體完整程度、結構面狀態、地下水和主要結構面產狀5項因素之和。各項因素的評分辦法在該規范中均有明確規定。圍岩強度應力比亦有專門的公式計算。
3.鐵路隧道圍岩
《鐵路工程地質勘察規范》(TB10012-2001)規定,隧道工程地質調繪時,應根據地質調繪、勘探、測試成果資料,綜合分析岩性、構造、地下水及環境條件,按表2-2-19分段確定隧道圍岩分級。
表2-2-19 鐵路隧道圍岩的基本分級
續表
該規范還規定,鐵路隧道圍岩分級應根據圍岩基本分級,受地下水,高地應力及環境條件等影響的分級修正,綜合分析後確定。關於岩體完整程度的劃分,地下水影響的修正,高地應力影響的修正及環境條件的影響,規范中都有明確的規定。
4.井巷工程圍岩
礦山工程中的井巷工程,其功能和結構更為多樣,所以井巷工程對圍岩的分類更加詳盡,各種定性和定量指標明顯多於其他標准。《岩土工程勘察技術規范》(YS5202-2004、J300-2004)規定,井巷工程評定圍岩質量等級按表2-2-20劃分圍岩類別。
表2-2-20 井巷工程圍岩分類
續表
續表
5.工程岩體
國家規范:《錨桿噴射混凝土支護技術規范》(GB50086-2001)從工程岩體支護設計和施工的需要出發,給出圍岩分級表,與表2-2-20相比,僅少了Ⅵ、Ⅶ兩類,主要工程地質特徵少了岩石質量指標RQD和岩體及土體堅固性系數兩欄,其他完全相同。
(七)岩質邊坡的岩體分類
《建築邊坡工程技術規范》(GB50330-2002)對岩質邊坡的岩體分類方法,見表2-2-21
表2-2-21 岩質邊坡的岩體分類(GB50330-2002)
續表
表2-2-22 岩體完整程度劃分
(八)深圳地區岩體分類、鑒定中存在的問題和改進意見
1)深圳地區的建築工程除大量的房屋建築外,公路(道路)橋梁、水利、地鐵、鐵路等均有大量的投資建設,各行業對岩體質量等級的劃分在執行不同規范的分類標准。在當前情況下,這一狀況將繼續下去。但是,對某一岩體的不同分類標准,僅僅是某一行業的習慣性作法。宏觀上看不同分類標準的具體內容並無原則性的區別。無論採用哪種標准都不應該影響岩體評價的正確性。
2)岩體工程特性的評價中,岩體的結構分類應該受到足夠的重視。尤其是高大邊坡、地質災害評估等岩體結構對岩體穩定起主導作用的工程項目。只有採取多種科學勘察手段和縝密地進行分析,岩體的結構特徵才能弄清楚。
3)岩石風化程度的判斷,現場工作除很具經驗的野外觀察和標准貫入試驗外,應多採用岩體波速測試方法,使之成為常用方法之一。准確的波速測試結果,可能比標貫試驗所得結果更能准確地判斷岩石的風化程度。
4)岩石的風化程度是隨埋藏深度的增加而減弱的,風化岩石的強度則是隨埋藏深度的增加而增加的。為了充分發揮地基承載力,深圳市地基基礎勘察設計規范(送審稿)將厚層花崗岩強風化帶分為上、中、下3個亞帶,其劃分方法見表2-2-23。
表2-2-23 厚層花崗岩強風化帶細分
需要指出的是,花崗岩的風化規律一般是上部風化嚴重,隨深度增加而減弱,但也有個別情況,有時隨深度增加風化程度並無明顯變化,故在劃分風化亞帶時,應視強風化帶的厚度和風化程度改變的深淺,也可以劃分一個亞帶或兩個亞帶,不可強求一律劃分為3個亞帶。
龍崗區的碳酸鹽類岩石——灰岩、白雲岩、大理岩等基本上不存在全風化和強風化層。由於構造的影響或是其他某種原因(如表面溶蝕劇烈),可能岩石的裂隙比較發育,塊度比較小。
二、土體
(一)土體的含義及其工程地質分類
土是泛指還沒有固結硬化成岩石的疏鬆沉積物。土是堅硬岩石經過破壞、搬運和沉積等一系列作用和變化後形成的。土多分布在地殼的最上部。工程地質學把土看作與構成地殼的其他岩石一樣,均是自然歷史的產物。土的形成時間、地點、環境以及形成的方式不同,其工程地質特性也不同。因此在研究土的工程性質時,強調對其成因類型和地質歷史方面的研究具有特殊重要意義。
土的工程地質分類有以下特點:①分類涵蓋自然界絕大多數土體;②同類或同組的土具備相同或相似的外觀和結構特徵,工程性質相近,力學的理論分析和計算基本一致;③獲取土的物理力學指標的試驗方法基本相同;④工程技術人員,從土的類別可以初步了解土的工程性質。
土的工程地質分類是以鬆散粒狀(粗粒土)體系和鬆散分散(細粒土)體系的自然土為對象,以服務於人類工程建築活動為目的的分類。分類的任務是將自然土按其在人類工程建築活動作用下表現出的共性劃分為類或組。
合理的工程地質分類,具有以下實際用途:①根據土的分類,確定土的名稱,它是工程地質各種有關圖件中劃分土類的依據;②根據各類土的工程性質,對土的質量和建築性能提出初步評價;③根據土的類型確定進一步研究的內容、試驗項目和數量、研究的方法和方向;④結合反映土體結構特徵的指標和建築經驗,初步評價地基土體的承載能力和斜坡穩定性,為基礎和邊坡的設計與施工提供依據。
土的工程地質分類有普通的和專門的兩類。普通分類的劃分對象包括人類工程活動可能涉及的自然界中的絕大多數土體,適用於各類工程,分類依據是土的主要工程地質特徵,如碎石土、砂土、黏性土等。專門分類是為滿足某類工程的需要,或者根據土的某一或某幾種性質而制定的分類,這種分類一般比較詳細,比如砂土的密實度分類,黏性土按壓縮性指標分類等等。應當指出的是,普通分類與專門分類是相輔相成的,前者是後者的基礎,後者是前者的補充和深化。
(二)國外土的工程分類概況
近幾十年來,國外在土的工程地質分類研究方面有很大進展,工業和科學技術發達的主要國家,都分別先後制定了各自全國統一的分類標准(表2-2-24)。其中英國、日本、德國的分類均以美國分類為藍本,結合各自國情適當調整、修改而制定的。
表2-2-24 一些國家的土質分類簡況
上述各國的土質分類,都採用了統一分類體系和方法,不僅使各自國內對土質分類有了共同遵循的依據,而且體現了國際統一化的趨勢,以促進國際交流與合作。
下列美國的統一分類法(表2-2-25)作為樣本,以了解國外分類的標准和方法。
表2-2-25 美國的土的統一分類法
續表
(三)國內土的工程分類
1.統一分類法
1990年,國家標准《土的分類標准》(GBJ 145-90)發布,並於1991年8月起執行。在此之前或之後,水利水電、公路交通等行業土的分類標准與GBJ 145-90標准沒有明顯區別。(GBJ 145-90)土的分類如表2-2-26和表2-2-27所示。
表2-2-26 粒組的劃分
表2-2-27 土質分類表
2.建築分類法
國標《建築地基設計規范》(GB50007-2002)土的分類方法(簡稱:建築分類法)如表2-2-28。這是從早期《工業與民用建築地基基礎設計規范》(TJ7-74)(試行)到《建築地基基礎設計規范》(GBJ7-89)一直延續下來的土的分類標准。在TJ7-74規范之前,我國一直沿用前蘇聯規范(HИTY127-55)。建築分類法在房屋建築地基基礎工程或類似的工程中廣泛運用,這在不少行業規范中得以反映,此分類方法也為廣大工程技術人員所熟知。目前深圳除公路、鐵路行業外,大多採用此分類標准,並納入到深圳市的地方標准之中。
表2-2-28 土的分類
(四)土的狀態分類
土的狀態分類屬專門分類。對於某種行業或某類工程,土的狀態標準是有所區別的,現以《岩土工程勘察規范》(50021-2001)中規定的最常用的分類標准,對碎石土、砂土、粉土的密實度和對粉土的濕度及黏性土的狀態進行分類,見表2-2-29至表2-2-34。
表2-2-29 碎石土密實度按M63.5分類
表2-2-30 碎石土密實度按N120分類
表2-2-31 砂土密實度分類
表2-2-32 粉土密實度分類
表2-2-33 粉土濕度分類
表2-2-34 黏性土狀態分類
(五)土的現場鑒別方法
1.碎石土密實度現場鑒別方法(表2-2-35)
表2-2-35 碎石土密實度現場鑒別
2.砂土分類現場鑒別方法(表2-2-36)
表2-2-36 砂土分類現場鑒別
3.砂土密實度現場鑒別方法(表2-2-37)
表2-2-37 砂土密實度現場鑒別
4.砂土濕度的現場鑒別方法(表2-2-38)
表2-2-38 砂土濕度現場鑒別
5.粉土密實度現場鑒別方法(表2-2-39)
表2-2-39 粉土密實度現場鑒別
6.粉土濕度現場鑒別方法(表2-2-40)
表2-2-40 粉土濕度現場鑒別
7.黏性土狀態現場鑒別方法(表2-2-41)
表2-2-41 黏性土狀態現場鑒別
8.有機質土和淤泥質土的分類
土按有機質分類和鑒定方法,《岩土工程勘察規范》(GB50021—2001)的分類方法見表2-2-42。深圳市沿海近岸地區存在大量淤泥或淤泥質土,在上更新統(Q3)的雜色黏土中,有一層泥炭質土,局部有泥炭層發育。
表2-2-42 土按照有機質分類
(六)土的定名和描述
1.統一分類法定名
1)巨粒土和含巨粒的土、粗粒土按粒組、級配、所含細粒的塑性高低可劃分為16種土類;細粒土按塑性圖、所含粗粒類別以及有機質多寡劃分16種土類。
2)土的名稱由一個或一組代號組成:一個代號即表示土的名稱,由兩個基本代號構成時,第一個代號表示土的主成分,第二個代號表示副成分(土的級配或土的液限);由3個基本代號構成時,第一個代號表示土的主成分,第二個代號表示液限;第三個代號表示土中微含的成分。
《土的分類標准》(G B J145-90),對特殊土的判別,列出了黃土,膨脹土和紅黏土。對花崗岩殘積土並沒有特別加以說明。根據深圳有關單位的經驗,花崗岩殘積土中的礫質黏性土相當於G B J145-90中的含細粒土礫,代號GF;砂質黏性土相當於細粒土質礫,代號GC-GM;黏性土相當於高液限粉土一低液限粉土,代號M H-M L。對淤泥和淤泥質土,G B J145-90分的不細,從工程需要出發,淤泥和淤泥質土的分類宜按建築行業標准。
2.建築行業定名
建築行業定名依照下列幾個標准:
1)土名前冠以土類的成因和年代。
2)碎石土和砂土按顆粒級配定名。
3)粉土以顆粒級配及塑性指數定名。
4)黏性土以塑性指數定名。
5)對混合土按主要土類定名並冠以主要含有物,如含碎石黏土,含黏土角礫等。
6)對同一土層中有不同土類呈韻律沉積時,當薄層與厚層的厚度比大於三分之一時,宜定為「互層」;厚度比為十分之一至三分之一時,宜定為「夾層」;厚度比小於十分之一的土層且多次出現時,宜定為「夾薄層」。當土層厚度大於0.5m時,宜單獨分層。
3.土的描述內容
(1)當按統一分類法(GBJ145-90)定名時,應按下列內容描述
1)粗粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;土顆粒形狀(圓、次圓、稜角或次稜角);土顆粒的礦物成分;土顏色和有機質;所含細粒土成分(黏土或粉土);土的代號和名稱。
2)細粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;潮濕時土的顏色及有機質;土的濕度(干、濕、很濕或飽和);土的狀態(流動、軟塑、可塑或硬塑);土的塑性(高、中或低);土的代號和名稱。
(2)當按建築分類法(GB50007-2002)定名時,應按下列內容描述
1)碎石土:名稱、顆粒級配、顆粒排列、渾圓度、母岩成分、風化程度、充填物的性質和充填程度、膠結性、密實度及其他特徵。
2)砂土:名稱、顏色成分、顆粒級配、包含物成分及其含量、黏粒含量、膠結性、濕度、密實度及其他特徵。
3)粉土:名稱、顏色、包含物成分及其含量、濕度、密實度、搖振反應及其他特徵。
4)黏性土:名稱、顏色、結構特徵、包含物成分及其含量、搖振反應、光澤反應、干強度、韌性、異味及其他特徵。
5)特殊性土:除應描述上述相應土類的內容外,尚應描述其特徵成分和特殊性質,如對淤泥尚需描述臭味、有機質含量;對填土尚需描述物質成分、堆積年代、密實度和均勻程度等。
6)互層(夾層)土:對具有互層、夾層、夾薄層特徵的土,尚應描述各層的厚度及層理特徵。
㈣ 岩土的工程分類方法及其意義是什麼
分類方法,作為建築地基的岩土, 可分為岩石、碎石土、砂土、粉土、黏性土和人工填土。
根據土方開挖難易程度不同,可將土石分為八類,以便選擇施工方法和確定勞動量, 為計算勞動量、機具及工程費用提供依據。
(1)一類土:松軟土。 主要包括砂土、粉土、沖積砂土層、疏鬆的種植土、淤泥(泥炭)等。堅實系數為0.5~ 0.6,採用鍬、鋤頭挖掘,少許用腳蹬。
(2)二類土:普通土。 主要包括粉質黏土,潮濕的黃土,夾有碎石、卵石的砂,粉土混卵(碎)石,種植土、填 土等。堅實系數為0.6~O.8,用鍬、鋤頭挖掘,少許用鎬翻鬆。
(3)三類土:堅土。 主要包括軟及中等密實黏土,重粉質黏土、礫石土,干黃土、含有碎石卵石的黃土、粉 質黏土,壓實的填土等。堅實系數為0.8~1.0,主要用鎬,少許用鍬、鋤頭挖掘,部分用撬 棍。
(4)四類土:砂礫堅土。 主要包括堅硬密實的黏性土或黃土,含碎石、卵石的中等密實的黏性土或黃土,粗卵石, 天然級配砂石,軟泥灰岩等。堅實系數為1.0~1.5,整個先用鎬、撬棍,後用鍬挖掘,部分 使用楔子及大錘。
(5)五類土:軟石。 主要包括硬質黏土,中密的頁岩、泥灰岩、白堊土,膠結不緊的礫岩,軟石灰及貝殼石 灰石等。堅實系數為1.5~4.0,用鎬或撬棍、大錘挖掘,部分使用爆破方法。
(6)六類土:次堅石。 主要包括泥岩、砂岩、礫岩,堅實的頁岩、泥灰岩,密實的石灰岩,風化花崗岩、片麻 岩及正長岩等。堅實系數為4.0~10.0,用爆破方法開挖,部分用風鎬。
(7)七類土:堅石。 主要包括大理石,輝綠岩,玢岩,粗、中粒花崗岩,堅實的白雲石、砂岩、礫岩、片麻 岩、石灰岩,微風化安山岩,玄武岩等。堅實系數為10.0~18.0,用爆破方法開挖。
(8)八類土:特堅石。 主要包括安山岩,玄武岩,花崗片麻岩,堅實的細粒花崗岩、閃長岩、石英岩、輝長岩、 輝綠岩、玢岩、角閃岩等。堅實系數為18.0~25.0以上,用爆破方法開挖。
岩土的工程性能
(1)內摩擦角。
(2)土抗剪強度。
(3)黏聚力。
(4)土的天然含水量。
(5)土的天然密度。
(6)土的干密度。
(7)土的密實度。
(8)土的可松性。
㈤ 中華人民共和國《工程岩體分級標准》(GB—)
1 總則
1.0.1 為建立統一的評價工程岩體穩定性的分級方法;為岩石工程建設的勘察、設計、施工和編制定額提供必要的基本依據,制定本標准。
1.0.2 本標准適用於各類型岩石工程的岩體分級。
1.0.3 工程岩體分級,應採用定性與定量相結合的方法,並分兩步進行,先確定岩體基本質量,再結合具體工程的特點確定岩體級別。
1.0.4 工程岩體分級所必需的地質調查和岩石試驗,除應符合本標准外,尚應符合有關現行國家標準的規定。
2 術語、符號(略)
3 岩體基本質量的分級因素
3.1 分級因素及其確定方法
3.1.1 岩體基本質量應由岩石堅硬程度和岩體完整程度兩個因素確定。
3.1.2 岩石堅硬程度和岩體完整程度,應採用定性劃分和定量指標兩種方法確定。
3.2 岩石堅硬程度的定性劃分
3.2.1 岩石堅硬程度,應按表3.2.1進行定性劃分。
表3.2.1 岩石堅硬程度的定性劃分
3.2.2 岩石堅硬程度定性劃分時,其風化程度應按表3.2.2確定。
表3.2.2 岩石風化程度的劃分
3.3 岩體完整程度的定性劃分
3.3.1 岩體完整程度,應按表3.3.1進行定性劃分。
表3.3.1 岩體完整程度的定性劃分
3.3.2 結構面的結合程度,應根據結構面特徵,按表3.3.2確定。
表3.3.2 結構面結合程度的劃分
3.4 定量指標的確定和劃分
3.4.1 岩石堅硬程度的定量指標,應採用岩石單軸飽和抗壓強度(Rc)。Rc應採用實測值。當無條件取得實測值時,也可採用實測的岩石點荷載強度指數(Is(50))的換算值,並按下式換算:
地質工程學原理
3.4.2 岩石單軸飽和抗壓強度(Rc)與定性劃分的岩石堅硬程度的對應關系,可按表3.4.2確定。
表3.4.2 Rc與定性劃分的岩石堅硬程度的對應關系
3.4.3 岩體完整程度的定量指標,應採用岩體完整性指數(Kv)。Kv應採用實測值。當無條件取得實測值時,也可用岩體體積節理數(Jv),按表3.4.3確定對應的Kv值。
表3.4.3 Jv與Kv對照表
3.4.4 岩體完整性指數(Kv)與定性劃分的岩體完整程度的對應關系,可按表3.4.4確定。
表3.4.4 Kv與定性劃分的岩體完整程度的對應關系
3.4.5 定量指標Kv、Jv的測定,應符合本標准附錄A的規定。
4 岩體基本質量分級
4.1 基本質量級別的確定
4.1.1 岩體基本質量分級,應根據岩體基本質量的定性特徵和岩體基本質量指標(BQ)兩者相結合,按表4.1.1確定。
表4.1.1 岩體基本質量分級
4.1.2 當根據基本質量定性特徵和基本質量指標(BQ)確定的級別不一致時,應通過對定性劃分和定量指標的綜合分析,確定岩體基本質量級別。必要時,應重新進行測試。
4.2 基本質量的定性特徵和基本質量指標
4.2.1 岩體基本質量的定性特徵,應由表3.2.1和表3.3.1所確定的岩石堅硬程度和岩體完整程度組合確定。
4.2.2 岩體基本質量指標(BQ),應根據分級因素的定量指標Rc的兆帕數值和Kv,按下式計算:
地質工程學原理
註:使用(4.2.2)式時,應遵守限制條件:①當Rc>90Kv+30時,應以Rc=90Kv+30和Kv代入計算BQ值。②當Kv>0.04Rc+0.4時,應以Kv=0.04Rc+0.4和Rc代入計算BQ值。
5.工程岩體級別的確定
5.1 一般規定
5.1.1 對工程岩體進行初步定級時,宜按表4.1.1規定的岩體基本質量級別作為岩體級別。
5.1.2 對工程岩體進行詳細定級時,應在岩體質量分級的基礎上,結合不同類型工程的特點,考慮地下水狀態、初始應力狀態、工程軸線或走向線的方位與主要軟弱結構面產狀的組合關系等必要的修正因素,其中邊坡岩體,還應考慮地表水的影響。
5.1.3 岩體初始應力狀態,當無實測資料時,可根據工程埋深或開挖深度、地形地貌、地質構造運動史、主要構造線和開挖過程中出現的岩爆、岩心餅化等特殊地質現象,按本標准附錄B作出評估。
5.1.4 當岩體的膨脹性、易溶性以及相對於工程范圍,規模較大、貫通性較好的軟弱結構面成為影響岩體穩定性的主要因素時,應考慮這些因素對工程岩體級別的影響。
5.1.5 岩體初步定級時,岩體物理力學參數,可按本標准附錄C中表C.0.1選用。結構面抗剪斷峰值強度參數,可根據岩石堅硬程度和結構面結合程度,按本標准附錄C中表C.0.2選用。
5.2 工程岩體級別的確定
5.2.1 地下工程岩體詳細定級時,如遇有下列情況之一時,應對岩體基本質量指標(BQ)進行修正,並以修正後的值按表4.1.1確定岩體級別。
5.2.1.1 有地下水;
5.2.1.2 岩體穩定性受軟弱結構面影響,且由一組起控製作用;
5.2.1.3 存在本標准附錄B表B.0.1所列高初始應力現象。
5.2.2 地下工程岩體基本質量指標修正值([BQ]),可按附錄D計算。
5.2.3 對跨度等於或小於20m的地下工程,當已確定級別的岩體,其實際的自穩能力,與本標准附錄E相應級別的自穩能力不相符時,應對岩體級別作相應調整。
5.2.4 對大型的或特殊的地下工程岩體,除應按本標准確定基本質量級別外,詳細定級時,尚可採用有關標準的方法,進行對比分析,綜合確定岩體級別。
5.2.5 工業與民用建築地基岩體應按表4.1.1規定的基本質量級別定級。
5.2.6 工業與民用建築地基岩體基岩承載力可按下列規定確定:
5.2.6.1 各級岩體基岩承載力基本值(f0)可按表5.2.6-1確定。
表5.2.6-1 基岩承載力基本值(f0)
5.2.6.2 考慮基岩形態影響時,基岩承載力標准值(fk)可按下式確定。
地質工程學原理
5.2.6.3 基岩形態影響折減系數(η),可按表5.2.6-2選用。
表5.2.6-2 基岩形態影響折減系數η
5.2.7 邊坡工程岩體詳細定級時,應按不同坡高考慮地下水、地表水、初始應力場、結構面間組合、結構面的產狀與邊坡面間的關系等因素對邊坡岩體級別的影響進行修正。
附錄A KV、JV測試的規定
A.0.1 岩體完整性指數(KV),應針對不同的工程地質岩組或岩性段,選擇有代表性的點、段,測定岩體彈性縱波速度,並應在同一岩體取樣測定岩石彈性橫波速度。Kv值應按下式計算:
地質工程學原理
式中:Vpm為岩體彈性縱波速度(km/s);Vpr為岩石彈性橫波速度(km/s)。
A.0.2 岩體體積節理數(Jv),應針對不同的工程地質岩組或岩性段,選擇有代表性的露頭或開挖壁面進行節理(結構面)統計。除成組節理外,對延伸長度大於1m的分散節理亦應予以統計。已為硅質、鐵質、鈣質充填再膠結的節理不予統計。
每一測點的統計面積,不應小於2×5m2。岩體Jv值,應根據節理統計結果,按下式計算:
地質工程學原理
式中:Jv為岩體體積節理數(條/m3);Sn為第n組節理每米長測線上的條數;Sk為每立方米岩體非成組節理條數。
附錄B 岩體初始應力場評估
B.0.1 在無實測成果時,可根據地質勘察資料,按下列方法對初始應力場作出評估:
(1)較平緩的孤山體,一般情況下,初始應力的垂直向應力為自重應力,水平向應力不大於γH·ν/(1-ν)。
(2)通過對歷次構造形跡的調查和對近期構造運動的分析,以第一序次為准,根據復合關系,確定最新構造體系,據此確定初始應力的最大主應力方向。
當垂直向應力為自重應力,且是主應力之一時,水平向主應力較大的一個,可取(0.8~1.2)γH或更大。
(3)埋深大於1000m,隨著深度的增加,初始應力場逐漸趨向於靜水壓力分布,大於1500m以後,一般可按靜水壓力分布考慮。
(4)在峽谷地段,從谷坡至山體以內,可區分為應力釋放區、應力集中區和應力穩定區。峽谷的影響范圍,在水平方向一般為谷寬的1~3倍。對兩岸山體,最大主應力方向一般平行於河谷,在谷底較深部位,最大主應力趨於水平且轉向垂直於河谷。
(5)地表岩體剝蝕顯著地區,水平向應力仍按原覆蓋厚度計算。
(6)發生岩爆或岩心餅化現象,應考慮存在高初始應力的可能,此時,可根據岩體在開挖過程中出現的主要現象,按表B.0.1評估。
註:H為工程埋深(m),γ為岩體重力密度(kN/m3),ν為岩體泊松比。
表B.0.1 高初始應力地區岩體在開挖過程中出現的主要現象
附錄C 岩體及結構面物理力學參數
C.0.1 岩體物理力學參數可按表C.0.1選用
表C.0.1 岩體物理力學參數
C.0.2 岩體結構面抗剪斷峰值強度參數可按表C.0.2選用
表C.0.2 岩體結構面抗剪斷峰值強度
附錄D 岩體基本質量指標的修正
D.0.1 岩體基本質量指標修正值([BQ]),可按下式計算:
地質工程學原理
式中:[BQ]為岩體基本質量指標修正值;BQ為岩體基本質量指標;K1為地下水影響修正系數;K2為主要軟弱結構面產狀影響修正系數;K3為初始地應力狀態影響修正系數。
K1、K2、K3值,可分別按表D.0.1-1、D.0.1-2、D.0.1-3確定,無表中所列情況時,修正系數為零。[BQ]出現負值時,應按特殊問題處理。
表D.0.1-1 地下水影響修正系數K1
表D.0.1-2 主要軟弱結構面產狀影響修正系數K2
表D.0.1-3 初始應力狀態影響修正系數K3
附錄E 地下工程岩體自穩能力
E.0.1 地下工程岩體自穩能力,應按表E.0.1確定。
表E.0.1 地下工程岩體自穩能力
續表
㈥ 工程岩體分級標准
法律分析:由於岩體的特徵十分復雜,目前在國際上、工程岩體分類趨向於利用多種測試方法和手段去獲取岩體的多項定量指標,並對各參數給以不同的評分,最後根據結合特徵值並與工程地質勘察和岩體測試式作相結合,劃分和確定岩體工程質量的好壞,以便根據分類要求,判定類別,採取相應工程措施。對岩體的分級依靠工程岩體比尼奧斯基分類法。
法律依據:《建設部標準定額司關於同意等三十三項電力行業標准備案的函》 中國電力企業聯合會:
你單位「關於申請三十三項電力行業工程建設標准備案的函」收悉。經研究,同意《水電水利工程岩體觀測規程》等三十三項標准作為「中華人民共和國工程建設行業標准」備案(詳見附件)。
該三十三項標準的備案公告,將刊登在近期出版的《工程建設標准化》刊物上。
㈦ 岩土體工程地質類型分區
平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。
圖1-8-3 昌樂縣岩土體工程地質類型分區略圖
(一)岩體工程地質類型
1.堅硬的塊狀侵入岩岩組
分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。
2.堅硬的塊狀-似層狀噴出岩岩組
主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。
3.堅硬的塊狀變質岩岩組
主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。
4.堅硬較堅硬的中厚-厚層狀灰岩岩組
僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.較堅硬的中厚—厚層碎屑岩岩組
主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。
6.較堅硬的薄層狀頁岩夾灰岩岩組
局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土體工程地質類型
1.北部沖洪積上層黏性土多層或雙層結構
分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。
2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構
分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構
分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。
㈧ 工程岩體結構類型
岩石級別 堅固程度 代表性岩石
Ⅰ 最堅固 最堅固、緻密、有韌性的石英岩、玄武岩和其他
各種特別堅固的岩石。(f=20)
Ⅱ 很堅固 很堅固的花崗岩、石英斑岩、硅質片岩,較堅固
的石英岩,最堅固的砂岩和石灰岩.(f=15)
Ⅲ 堅 固 緻密的花崗岩,很堅固的砂岩和石灰岩,石英礦
脈,堅固的礫岩,很堅固的鐵礦石.(f=10)
Ⅲa 堅 固 堅固的砂岩、石灰岩、大理岩、白雲岩、黃鐵
礦,不堅固的花崗岩。(f=8)
Ⅳ 比較堅固 一般的砂岩、鐵礦石 (f=6)
Ⅳa 比較堅固 砂質頁岩,頁岩質砂岩。(f=5)
Ⅴ 中等堅固 堅固的泥質頁岩,不堅固的砂岩和石灰岩,軟礫
石。(f=4)
Ⅴa 中等堅固 各種不堅固的頁岩,緻密的泥灰岩.(f=3)
Ⅵ 比較軟 軟弱頁岩,很軟的石灰岩,白堊,鹽岩,石膏,
無煙煤,破碎的砂岩和石質土壤.(f=2)
Ⅵa 比較軟 碎石質土壤,破碎的頁岩,粘結成塊的礫石、碎
石,堅固的煤,硬化的粘土。(f=1.5)
Ⅶ 軟 軟緻密粘土,較軟的煙煤,堅固的沖擊土層,粘土質土壤。 (f=1)
Ⅶa 軟 軟砂質粘土、礫石,黃土。(f=0.8)
Ⅷ 土 狀 腐殖土,泥煤,軟砂質土壤,濕砂。(f=0.6)
Ⅸ 鬆散狀 砂,山礫堆積,細礫石,鬆土,開採下來的煤.
(f=0.5)
Ⅹ 流沙狀 流沙,沼澤土壤,含水黃土及其他含水土壤.
(f=0.3) A
表示礦岩的堅固性的量化指標.
人們在長期的實踐中認識到,有些岩石不容易破壞,有一些則難於破碎。難於破碎的岩石一般也難於鑿岩,難於爆破,則它們的硬度也比較大,概括的說就是比較堅固。因此,人們就用岩石的堅固性這個概念來表示岩石在破碎時的難易程度。
堅固性的大小用堅固性系數來表示又叫硬度系數,也叫普氏硬度系數f值)。
堅固性系數f=R/100 (R單位 kg/cm2)
式中R——為岩石標准試樣的單向極限抗壓強度值。
通常用的普氏岩石分及法就是根據堅固性系數來進行岩石分級的。
如:
① 極堅固岩石 f=15~20(堅固的花崗岩,石灰岩,石英岩等)
② 堅硬岩石 f=8 ~10(如不堅固的花崗岩,堅固的砂岩等)
③ 中等堅固岩石 f=4 ~6 (如普通砂岩,鐵礦等)
④ 不堅固岩石 f=0.8~3 (如黃土、僅為0.3)
礦岩的堅固性也是一種抵抗外力的性質,但它與礦岩的強度卻是兩種不同的概念。
強度是指礦岩抵抗壓縮,拉伸,彎曲及剪切等單向作用的性能。而堅固性所抵抗的外力卻是一種綜合的外力。(如抵抗鍬,稿,機械碎破,炸葯的綜合作用力)。
岩石分類
岩石可分三大類:1,岩漿岩{噴出岩}.2,沉積岩.3,變質岩.
1、岩漿岩主要有:花崗岩,安山岩,閃長岩,流紋岩,玄武岩輝長岩等等.
2、沉積岩主要有:石英砂岩,石灰礫岩,泥鐵岩,白雲岩,泥岩,石膏等.
3、變質岩主要有:片麻岩,綠泥石片岩,千枚岩,大理岩,雲母片岩等等.
雖然岩石的面貌是千變萬化的,但是從它們形成的環境,也就是從成因上來劃分,可以把岩石分為三大類:沉積岩、岩漿岩和變質岩。
1、沉積岩
沉積岩是在地表或近地表不太深的地方形成的一種岩石類型。它是由風化產物、火山物質、有機物質等碎屑物質在常溫常壓下經過搬運、沉積和石化作用,最後形成的岩石。不論那種方式形成的碎屑物質都要經歷搬運過程,然後在合適的環境中沉積下來,經過漫長的壓實作用,石化成堅硬的沉積岩。
沉積岩依照沈積物顆粒的大小又分礫岩、砂岩、頁岩、石灰岩.沉積岩的形成 1.風化侵蝕:在河流上的大石頭,經年累月被侵蝕風化,逐漸崩解成小的沙泥、碎屑。 2.搬運:這些碎屑被水流從上游搬運到下游。 3.堆積:下游流速減緩,搬運力減小,岩石碎屑便沉積下來。 4.壓密:新的沉積物壓在舊的沉積物上,時間久了,底下的沉積物被壓得較緊實。 5.膠結:地下水經過沉積物的孔隙,帶來的礦物質填滿孔隙,使岩石碎屑顆粒緊緊膠結在一起,形成沉積岩。 6.露出:堆積在海底的沉積岩層在板塊運動的推擠下拱出海面,露出地表。
2、岩漿岩
岩漿岩也叫火成岩,是在地殼深處或在上地幔中形成的岩漿,在侵入到地殼上部或者噴出到地表冷卻固結並經過結晶作用而形成的岩石。因為它生成的條件與沉積岩差別很大,因此,它的特點也與沉積岩明顯不同。
岩漿岩又分安山岩、玄武岩、花崗岩。 由地底岩漿冷卻凝固形成,由於岩漿成分和冷卻凝固方式不同,便形成不同的火成岩。岩漿岩的形成: 1.安山岩:岩漿藉由火山口噴發出地面,快速冷卻形成的。 2.玄武岩:岩漿經由緩和噴發漫流而出,逐漸冷凝形成的。 3.花崗岩:岩漿並不噴出地面,而是在地底下慢慢冷卻形成的。
3、變質岩
在地殼形成和發展過程中,早先形成的岩石,包括沉積岩、岩漿岩,由於後來地質環境和物理化學條件的變化,在固態情況下發生了礦物組成調整、結構構造改變甚至化學成分的變化,而形成一種新的岩石,這種岩石被稱為變質岩。變質岩是大陸地殼中最主要的岩石類型之一。
變質岩又分:板岩、片岩、片麻岩、大理岩。 變質岩的形成:1.為變質前的岩層:由於沉積或火山作用,堆積出一層層岩層。 2.擠壓岩層:在強大擠壓和摩擦力之下,產生溫度和壓力,使得深埋在地底下的岩石發生變質作用。 3.變質成新岩石:岩石里零散分布的礦物結晶會呈規矩排列,或生出新礦物來,而變成各種新的變質岩。
岩石對人類來說,並不陌生。由動物進化為人類後的第一個時代就是石器時代。那時,我們的祖先用石頭作為與大自然作斗爭的工具。那麼什麼是岩石呢?現代地質學稱石頭為岩石,岩石的「岩」字在古代是山崖和山穴的意思,表示山勢高峻、峰嶺陡峭的地勢;「石」字則是指磬、碑、硯、隕星等。自從18世紀地質學誕生以來,「岩石」一詞就不再沿用古義了,我們可以給岩石下這樣一個定義:岩石是各種地質作用形成的自然歷史產物,是構成地殼的基本組成單位,是由礦物及非晶質組成的,具有一定結構、構造的固態地質體。外觀上岩石是多種多樣的,但從成因上看,可將所有的岩石歸為三大類,即岩漿岩、沉積岩和變質岩,這就是自然界三大類岩石。這三大類岩石在地殼中是怎樣分布的呢?在全球陸地表面,沉積岩覆蓋了75%,岩漿岩和變質岩加在一起才只佔陸地面積的1/4。但是到了地下深處,沉積岩逐漸變成了「少數民族」。在整個地殼中,沉積岩只佔到地殼體積的8%,變質岩佔了27%,剩下的65%都是岩漿岩。
岩石在太陽輻射、大氣、水和生物作用下出現破碎、疏鬆及礦物成分次生變化的現象。導致上述現象的作用稱風化作用。分為:①物理風化作用。主要包括溫度變化引起的岩石脹縮、岩石裂隙中水的凍結和鹽類結晶引起的撐脹、岩石因荷載解除引起的膨脹等。②化學風化作用。包括:水對岩石的溶解作用;礦物吸收水分形成新的含水礦物,從而引起岩石膨脹崩解的水化作用;礦物與水反應分解為新礦物的水解作用;岩石因受空氣或水中游離氧作用而致破壞的氧化作用。③生物風化作用。包括動物和植物對岩石的破壞,其對岩石的機械破壞亦屬物理風化作用,其屍體分解對岩石的侵蝕亦屬化學風化作用。人為破壞也是岩石風化的重要原因。岩石風化程度可分為全風化、強風化、弱風化和微風化4個級別。
大約在200年前,人們可能認為高山、湖泊和沙漠都是地球上永恆不變的特徵。可現在我們已經知道高山最終將被風化和剝蝕為平地,湖泊終將被沉積物和植被填滿,沙漠會隨著氣候的變化而行蹤不定。地球上的物質永無止境地運動著。暴露在地殼表面的大部分岩石都處在與其形成時不同的物理化學條件下,而且地表富含氧氣、二氧化碳和水,因而岩石極易發生變化和破壞。表現為整塊的岩石變為碎塊,或其成分發生變化,最終使堅硬的岩石變成鬆散的碎屑和土壤。礦物和岩石在地表條件下發生的機械碎裂和化學分解過程稱為風化。由於風、水流及冰川等動力將風化作用的產物搬離原地的作用過程叫做剝蝕
地表岩石在原地發生機械破碎而不改變其化學成分也不新礦物的作用稱物理風化作用。如礦物岩石的熱脹冷縮、冰劈作用、層裂和鹽分結晶等作用均可使岩石由大塊變成小塊以至完全碎裂。化學風化作用是指地表岩石受到水、氧氣和二氧化碳的作用而發生化學成分和礦物成分變化,並產生新礦物的作用。主要通過溶解作用水化作用水解作用碳酸化作用和氧化作用等式進行。
雖然所有的岩石都會風化,但並不是都按同一條路徑或同一個速率發生變化。經過長年累月對不同條件下風化岩石的觀察,我們知道岩石特徵、氣候和地形條件是控制岩石風化的主要因素。不同的岩石具有不同的礦物組成和結構構造,不同礦物的溶解性差異很大。節理、層理和孔隙的分布狀況和礦物的粒度,又決定了岩石的易碎性和表面積。風化速率的差異,可以從不同岩石類型的石碑上表現出來。如花崗岩石碑,其成分主要是硅酸鹽礦物。這種石碑就能很好地抵禦化學風化。而大理岩石碑則明顯地容易遭受風化。
氣候因素主要是通過氣溫、降雨量以及生物的繁殖狀況而表現的。在溫暖和潮濕的環境下,氣溫高,降雨量大,植物茂密,微生物活躍,化學風化作用速度快而充分,岩石的分解向縱深發展可形成巨厚的風化層。在極地和沙漠地區,由於氣候乾冷,化學風化的作用不大,岩石易破碎為稜角狀的碎屑。最典型的例子,是將矗立於乾燥的埃及已35個世紀並保存完好的克列奧帕特拉花崗岩尖柱塔,搬移到空氣污染嚴重的紐約城中心公園之後,僅過了75年就已面目全非。
地勢的高度影響到氣候:中低緯度的高山區山麓與山頂的溫度、氣候差別很大,其生物界面貌顯著不同。因而風化作用也存在顯著的差別。地勢的起伏程度對於風化作用也具普遍意義:地勢起伏大的山區,風化產物易被外力剝蝕而使基岩裸露,加速風化。山坡的方向涉及到氣候和日照強度,如山體的向陽坡日照強,雨水多,而山體的背陽坡可能常年冰雪不化,顯然岩石的風化特點差別較大。
剝蝕與風化作用在大自然中相輔相成,只有當岩石被風化後,才易被剝蝕。而當岩石被剝蝕後,才能露出新鮮的岩石,使之繼續風化。風化產物的搬運是剝蝕作用的主要體現。當岩屑隨著搬運介質,如風或水等流動時,會對地表、河床及湖岸帶產生侵蝕。這樣也就產生更多的碎屑,為沉積作用提供了物質條件。
岩石在日光、水分、生物和空氣的作用下,逐漸被破壞和分解為沙和泥土,稱為風化作用。沙和泥土就是岩石風化後的產物。
山地的中的岩石極為多樣,差別很大,進行工程分類十分必要。《94規范》首先按岩石強度分類,再進行風化分類。按岩石強度分為極硬、次硬、次軟和極軟,列舉了代表性岩石名稱。又以新鮮岩塊的飽和抗壓強度30MPa為分界標准。問題在於,新鮮的末風化的岩塊在現場有時很難取得,難以執行。
岩石的分類可以分為地質分類和工程分類。地質分類主要根據其地質成因、礦物成分、結構構造和風化程度,可以用地質名稱(即岩石學名稱)加風化程度表達,如強風化花崗岩、微風化砂岩等。這對於工程的勘察設計確是十分必要的。工程分類主要根據岩體的工程性狀,使工程師建立起明確的工程特性概念。地質分類是一種基本分類,工程分類應在地質分類的基礎上進行,目的是為了較好地概括其工程性質,便於進行工程評價。
為此,本次修訂除了規定應確定地質名稱和風化程度外,增加了岩塊的「堅硬程度」、岩體的「完整程度」和「岩體基本質量等級」的劃分。並分別提出了定性和定量的劃分標准和方法,可操作性較強。岩石的堅硬程度直接與地基的承載力和變形性質有關,其重要性是無疑的。岩體的完整程度反映了它的裂隙性,而裂隙性是岩體十分重要的特性,破碎岩石的強度和穩定性較完整岩石大大削弱,尤其對邊坡和基坑工程更為突出。
本次修訂將岩石的堅硬程度和岩體的完整程度各分五級,二者綜合又分五個基本質量等級。與國標《工程岩體分級標准》(GB50218-94)和《建築地基基礎設計規范》(GB50007-2002)協調一致。
劃分出極軟岩十分重要,因為這類岩石不僅極軟,而且常有特殊的工程性質,例如某些泥岩具有很高的膨脹性;泥質砂岩、全風化花崗岩等有很強的軟化性(單軸飽和抗壓強度可等於零);有的第三紀砂岩遇水崩解,有流砂性質。劃分出極破碎岩體也很重要,有時開挖時很硬,暴露後逐漸崩解。片岩各向異性特別顯著,作為邊坡極易失穩。事實上,對於岩石地基,特別注意的主要是軟岩、極軟岩、破碎和極破碎的岩石以及基本質量等級為V級的岩石,對可取原狀試樣的,可用土工試驗方法測定其性狀和物理力學性質。
舉例:
1 花崗岩,微風化:為較硬岩,完整,質量基本等級為Ⅱ級;
2 片麻岩,中等風化:為較軟岩,較破碎,質量基本等級為Ⅳ級;
3 泥岩,微風化:為軟岩,較完整,質量基本等級為Ⅳ級;
4 砂岩(第三紀),微風化:為極軟岩,較完整,質量基本等級為V級;
5 糜棱岩(斷層帶):極破碎,質量基本等級為V級。
岩石風化程度分為五級,與國際通用標准和習慣一致。為了便於比較,將殘積土也列在表A.0.3中。國際標准ISO/TC182/SCl也將風化程度分為五級,並列入殘積土。風化帶是逐漸過渡的,沒有明確的界線,有些情況不一定能劃分出五個完全的等級。一般花崗岩的風化分帶比較完全,而石灰岩、泥岩等常常不存在完全的風化分帶。這時可採用類似「中等風化-強風化』「強風化-全風化」等語句表述。同樣,岩體的完整性也可用類似的方法表述。第三系的砂岩、泥岩等半成岩,處於岩石與土之間,劃分風化帶意義不大,不一定都要描述風化。
3. 2. 4 關於軟化岩石和特殊性岩石的規定,與《94規范》相同,軟化岩石浸水後,其承載力會顯著降低,應引起重視。以軟化系數0.75為界限,是借鑒國內外有關規范和數十年工程經驗規定的。
石膏、岩鹽等易溶性岩石,膨脹性泥岩,濕陷性砂岩等,性質特殊,對工程有較大危害,應專門研究,故本規范將其專門列出。
3. 2. 5、3. 2. 6 岩石和岩體的野外描述十分重要,規定應當描述的內容是必要的。岩石質量指標RQD是國際上通用的鑒別岩石工程性質好壞的方法,國內也有較多經驗,《94規范》中已有反映,本次修訂作了更為明確的規定。
岩石
岩石是天然產出的具穩定外型的礦物或玻璃集合體,按照一定的方式結合而成。是構成地殼和上地幔的物質基礎。按成因分為岩漿岩、沉積岩和變質岩。其中岩漿岩是由高溫熔融的岩漿在地表或地下冷凝所形成的岩石,也稱火成岩;沉積岩是在地表條件下由風化作用、生物作用和火山作用的產物經水、空氣和冰川等外力的搬運、沉積和成岩固結而形成的岩石;變質岩是由先成的岩漿岩、沉積岩或變質岩,由於其所處地質環境的改變經變質作用而形成的岩石。
地殼深處和上地幔的上部主要由火成岩和變質岩組成。從地表向下16公里范圍內火成岩和變質岩的體積佔95%。地殼表面以沉積岩為主,它們約佔大陸面積的75%,洋底幾乎全部為沉積物所覆蓋。
岩石學主要研究岩石的物質成分、結構、構造、分類命名、形成條件、分布規律、成因、成礦關系以及岩石的演化過程等。它屬地質科學中的重要的基礎學科。
十八世紀末岩石學從礦物學中脫胎出來而發展成一門獨立的學科。在岩石學發展的初期,主要研究的是火成岩,到了十九世紀中葉才開始系統地研究變質岩,而沉積岩直到二十世紀初才引起人們的注意。目前岩石學正沿著岩漿岩石學、沉積岩石學和變質岩石學三個主要的分支方向發展。
古老岩石都出現在大陸內部的結晶基底之中。代表性的岩石屬基性和超基性的火成岩。這些岩石由於受到強烈的變質作用已轉變為富含綠泥石和角閃石的變質岩,通常我們稱為綠岩。如1973年在西格陵蘭發現了同位素年齡約38億年的花崗片麻岩。1979年,巴屯等測定南非波波林帶中部的片麻岩年齡約39億年左右。
加拿大北部的變質岩—阿卡斯卡片麻岩是保存完好的古老地球表面的一部分。放射性年代測定表明阿卡斯卡片麻岩有將近40億年的年齡,從而說明某些大陸物質在地球形成之後幾億年就已經存在了。
最近,科學家在澳大利亞西南部發現了一批最古老的岩石,根據其中所含的鋯石礦物晶體的同位素分析結果,表明它們的「年齡」約為43億至44億歲,是迄今發現的地球上最古老的岩石樣本,根據這一發現可以推論,這些岩石形成時,地球上已經有了大陸和海洋。在地球誕生2億至3億年後,可能並不象人們所認為的那樣由熾熱的岩漿所覆蓋,而是已經冷卻到了足以形成固體地表和海洋的溫度。地球的圈層分異在距今44億年前可能就已經完成了。
目前在中國發現的最古老岩石是冀東地區的花崗片麻岩,其中包體的岩石年齡約為35億年。
澳大利亞西部Warrawoona群中的微化石在形態結構上比較完整。它們究竟是藍藻還是細菌目前尚難確定。通常認為,早期疊層石是藍藻建造的,疊層石是藍藻存在的指示。如果35億年前就已經出現藍藻,則說明釋氧的光合作用早就開始了,這便引出一個問題:為什麼直到20億年前大氣圈才積累自由氧呢?從35億年前到20億年前中間相隔15億年之久,為什麼氧的積累如此緩慢?對此當然有不同的解釋。例如近年來已經發現疊層石也可能完全由光合細菌建造,或甚至由非光合細菌建造。
最古老生命存在的間接證據中較重要的是格陵蘭西部條帶狀鐵建造(BIF)和輕碳同位素。如果證據成立,則由此可推斷在38億年前的地球上已經出現進行釋氧光合作用的微生物,即類似藍藻的生物。根據Cloud的解釋,BIF是由光和微生物周期性地釋氧而引起亞鐵氧化為高價鐵沉積下來的。輕碳同位素也是光合作用的間接證據。但反對的意見認為,BIF形成所需的氧可以通過大氣中的水分子的光分解來提供,而輕碳同位素可能來自碳酸鹽的熱分解。
疊層石是前寒武紀未發生變質的碳酸鹽沉積中最常見的一種「准化石」,是由原核生物所建造的有機沉積。這種疊層狀的生物沉積構造是由於藍藻等低等微生物在其生命活動中,通過沉積物的捕獲和膠結作用發生周期性的沉積作用而形成的。根據Walter(1983)的統計,在澳大利亞、北美和南非三個不同大陸的11個地點發現了太古宙疊層石,其年齡都在25億年以上。晚元古代是地史上疊層石最繁盛的時期,其分布廣泛、形態多樣。後生動物出現以後疊層石驟然衰落。寒武紀至泥盆紀疊層石數量和分布范圍有限。泥盆紀以後疊層石只是殘存。現代海相疊層石只分布在澳大利亞、中美洲、中東等地的少數地區特殊環境中。
隕石是太陽系內小天體的珍貴標本,為研究太陽系的起源、演化和生命起源提供了寶貴的線索和資料。球粒隕石中不僅含有氨基酸,還有烴類、乙醇和其他可能形成保護原始細胞膜的脂肪族化合物。對生命起源的研究有較大意義。生物化學家David.W.Dreamer用默奇森隕石中得到的化合物製成了球形膜,這些小泡提供了氨基酸、核苷酸和其他有機化合物以及進行生命開始所必需的轉變環境。也就是說,當隕石撞擊地球時,產生形成生命所需的有機物及必需的環境。和生命起源於彗星的理論一樣,這是一種新的天外起源說。另外,康奈爾大學的C.Hyba指出,撞擊也可以用其它方式提供生命所需的原材料,來自一次隕石撞擊的熱和沖擊波可以在原始大氣中激發起合成有機化合物的化學反應。
隕石是降落到地球表面的小塊行星際物質撞入地球大氣圈後尚未被燒盡的流星體的殘片。在晴朗的夜晚,可以看到一線亮光劃過夜空,瞬間消失。這些彌漫在宇宙空間中的星際塵埃,如果被地球的引力捕獲便形成隕星;當它們以極快的速度進入地球大氣圈時與大氣發生摩擦、生熱、發光,一部分殘留下來落到地表就成為隕石。如果隕石在空中爆炸後象下雨一樣降落,就稱為隕石雨。1976年3月8日,我國吉林省降落過一次世界罕見的隕石雨,完整的隕石有100餘塊,重2噸多,其中最大的一塊重達1770公斤,是世界上最大的石隕石。隕石來自星際空間,在1969年阿普羅11號在月球著陸並將月岩帶回地球以前,隕石是人們能直接加以觀察的唯一的外來天體。
近代史上最驚人的隕石墜落事件是1908年的通古斯事件。當時在前蘇聯西伯利亞通古斯方圓800公里的范圍內,都可見到了火光;在100公里范圍內,都聽到了轟隆巨響;在50公里范圍內,高大樹木全部被燒毀。很多人推測這次事件與隕石墜落有關,但奇怪的是至今沒有找到隕石碎塊。因此成為世界著名的「通古斯之謎」,吸引了許多中外科學家前往這個地區進行考察和研究。
隕石可分為三類:石隕石、石鐵隕石和鐵隕石。其中以石隕石最多,約佔94%。同位素年齡測定隕石的年齡約為46億年。
石隕石:密度為3-3.5克/立方厘米。由硅酸鹽礦物橄欖石、輝石、少量斜長石和金屬鐵的微粒組成。可分為球粒隕石和無球粒隕石,前者含有直徑為1-2毫米大小的隕石球粒,它是熔融物質快速冷凝的產物。這種結構在地球上從未發現過。可能是在太陽系形成初期原始行星物質被原始太陽的高溫熔化後,在脫離太陽時迅速冷卻而形成的。因此,玻璃質球粒的成分就反映了太陽系形成初期原始行星的成分。
石鐵隕石:密度約5.6-6克/立方厘米,由鐵鎳和硅酸鹽礦物組成。鐵隕石:密度約8-8.5克/立方厘米。大約由80%-95%的金屬鐵和5%-20%的鎳組成。
㈨ 給岩石分類有哪幾種方法
岩石分類方法中,最重要、最普遍的是按照其地質成因,將岩石分為岩漿岩、沉積岩和變質岩三大類。此外,還有幾種方法:如按照岩石是產於地球內還是地球外,將岩石分為地球岩石和宇宙岩石;按照岩石組成礦物是單一的還是多種的,將岩石分為單礦岩和復礦岩;按照是無機還是有機成因,將岩石分為無機岩和有機岩;按照是天然成因還是人工的,將岩石分為天然岩石和人造岩石。