導航:首頁 > 知識科普 > x653點二用簡便方法怎麼寫

x653點二用簡便方法怎麼寫

發布時間:2022-06-22 06:48:24

❶ 25×1點二五×3點二的簡便方法

25×1點二五×3點二
=(25x0.4)x(1.25x8)
=10x10
=100
朋友,請及時採納正確答案,下次還可能幫到您哦,您採納正確答案,您也可以得到財富值,謝謝。

❷ 2.5×3點六的簡便運算怎麼

2.5×3.6可以通過乘法分配律的逆運算進行簡便運算,具體計算過程為:

2.5×3.6

=2.5×(4×0.9)

=(2.5×4)×0.9

=1×0.9

=0.9

(2)x653點二用簡便方法怎麼寫擴展閱讀:

數學中乘法運算應當遵循的運算定律:

1、乘法交換律:兩個數相乘,交換兩個因數的位置,積不變。

用字母表示:a×b=b×a。

2、乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。

用字母表示:(a×b)×c=a×(b×c)。

3、乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。

用字母表示:(a+b)×c=a×c+b×c。

❸ 65X65+65x3十65X2簡便運算怎麼算

巧算65×65+65×3+65×2
解題思路:不能進行簡便運算的按順序計算,簡便運算核心是運用加法和乘法各種定律進行計算,計算出整數部分方便後續計算的過程
解題過程:

65×65+65×3+65×2

=65×(65+3+2)

=65×70

=4550

存疑請追問,滿意請採納

❹ 3.2×65+6.5×68簡便方法怎麼算

最簡單的計算方法就是找出相同點,然後提出來,變成65*(3.2+0.1*68)=65*(3.2+6.8)=65*10=650

❺ 計算能力差,怎麼辦,怎麼學會速算

⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
【速算】幾十一乘以幾十一的速算方法
例如: 21×61= 41×91= 41×91= 51×61=

81×91= 41×51= 41×81= 71×81=

這些算式有什麼特點呢?

對了,是「幾十一乘以幾十一」的乘法算式,用什麼方法算就能

直接寫出得數呢?

我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積。

「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」

就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一

位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫

上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位

數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1

就一定正確。

我們來看兩個算式:

21×61=

41×91=

用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這

種速算方法直接寫得數時的思維過程。

第一個算式,21×61=?思維過程是:2×6=12,2+6=8,

21×61 就等於1281。

第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731。

試試上面題目吧!然後再看看下面幾題
61×91= 81×81= 31×71= 51×41=
方法不錯哦,強力推薦!

我補充的內容!!!!!!!!!!!!!!!!!!!!
第一講 加法速算
一.湊整加法
湊整加法就是湊整加差法,先湊成整數後加差數,就能算的快。8+7=15 計算時先將8湊成10 8加2等於10 7減2等於5 10+5=15
如17+9=26 計算程序是17+3=20 9-3=6 20+6=26
二 .補數加法
補數加法速度快,主要是沒有逐位進位的麻煩。補數就是兩個數的和為10 100 1000 等等。8+2=10 78+22=100 8是2的補數,2也是8的補數,78是22的補數,22也是78的補數。利用補數進行加法計算的方法是十位加1,個位減補。 例如6+8=14 計算時在6的十位加上1,變成16,再從16中減去8的補數2就得14
如6+7=13 先6+10=16 後16-3=13
如27+8=35 27+10=37 37-2=35
如25+85=110 25+100=125 125-15=110
如867+898=1765 867+1000=1867 1867-102=1765

三.調換位置的加法
兩個十位數互換位置,有速算方法是:十位加個位,和是一位和是雙,和是兩位相加排中央。例如61+16=77,計算程序是6+1=7 7是一位數,和是雙,就是兩個7,61+16=77 再如83+38=121 計算程序是8+3=11 11就是兩位數,兩位數相加1+1=2排中央,將2排在11中間,就得121。
第二講 減法速算
一.兩位減一位補數減法
兩位數減一位數的補數減法是:十位減1,個位加補。如15-8=7,15減去10等於5, 5加個位8的補數2等於7。
二.多位數補數減法
補數減法就是減1加補,三位減兩位的方法:百位減1,十位加補,如268-89=179,計算程序是268減100等於168,168加89的補數11就等於179。
三.調換位置的減法
兩個十位數互換位置,有速算方法:十位數減個位數,然後乘以9,就是差數。如86-68=18,計算程序是8-6=2,2乘以9等於18。
四.多位數連減法
多位數連減,採用補數加減數的方法達到速算。先找到被減數的補數,然後將所有的減數當成加數連加,再看和的補數是多少,和的補數就是所求之差數。舉例說明:653-35-67-43-168=340,先找被減數653的補數,653的補數是347,然後連加減數347+35+67+43+168=660,660的補數為340,差數就得340

第三講 乘法速算
一.兩個20以內數的乘法
兩個20以內數相乘,將一數的個位數與另一個數相加乘以10,然後再加兩個尾數的積,就是應求的得數。如12×13=156,計算程序是將12的尾數2,加至13里,13加2等於15,15×10=150,然後加各個尾數的積得156,就是應求的積數。

二.首同尾互補的乘法
兩個十位數相乘,首尾數相同,而尾十互補,其計算方法是:頭加1,然後頭乘為前積,尾乘尾為後積,兩積連接起來,就是應求的得數。如26×24=624。計算程序是:被乘數26的頭加1等於3,然後頭乘頭,就是3×2=6,尾乘尾6×4=24,相連為624。
三.乘數加倍,加半或減半的乘法
在首同尾互補的計算上,可以引深一步就是乘數可加倍,加半倍,也可減半計算,但是:加倍、加半或減半都不能有進位數或出現小數,如48×42是規定的演算法,然而,可以將乘數42加倍位84,也可以減半位21,也可加半倍位63,都可以按規定方法計算。48×21=1008,48×63=3024,48×84=4032。有進位數的不能算。如87×83=7221,將83加倍166,或減半41.5,這都不能按規定的方法計算。
四.首尾互補與首尾相同的乘法
一個數首尾互補,而另一個數首尾相同,其計算方法是:頭加1,然後頭乘頭為前積,尾乘尾為後積,兩積相連為乘積。如37×33=1221,計算程序是(3+1)×3×100+7×3=1221。
五.兩個頭互補尾相同的乘法
兩個十位數互補,兩個尾數相同,其計算方法是:頭乘頭後加尾數為前積,尾自乘為後積。如48×68=3264。計算程序是4×6=24 24+8=32 32為前積,8×8=64為後積,兩積相連就得3264。
六.首同尾非互補的乘法
兩個十位數相乘,首位數相同,而兩個尾數非互補,計算方法:頭加1,頭乘頭,尾乘尾,把兩個積連接起來。再看尾和尾的和比10大幾還是小幾,大幾就加幾個首位數,小幾就減掉幾個首位數。加減的位置是:一位在十位加減,兩位在百位加減。如36×35=1260,計算時(3+1)×3=12 6×5=30 相連為1230 6+5=11,比10大1,就加一個首位3,一位在十位加,1230+30=1260 36×35就得1260。再如36×32=1152,程序是(3+1)×3=12,6×2=12,12與12相連為1212,6+2=8,比10小2減兩個3,3×2=6,一位在十位減,1212-60就得1152。
七.一數相同一數非互補的乘法
兩位數相乘,一數的和非互補,另一數相同,方法是:頭加1,頭乘頭,尾乘尾,將兩積連接起來後,再看被乘數橫加之和比10大幾就加幾個乘數首。比10小幾就減幾個乘數首,加減位置:一位數十位加減,兩位數百位加減,如65×77=5005,計算程序是(6+1)×7=49,5×7=35,相連為4935,6+5=11,比10大1,加一個7,一位數十位加。4935+70=5005
八.兩頭非互補兩尾相同的乘法
兩個頭非互補,兩個尾相同,其計算方法是:頭乘頭加尾數,尾自乘。兩積連接起來後,再看兩個頭的和比10大幾或小幾,比10大幾就加幾個尾數,小幾就減幾個尾數,加減位置:一位數十位加減,兩位數百位加減。如67×87=5829,計算程序是:6×8+7=55,7×7=49,相連為5549,6+8=14,比10大4,就加四個7,4×7=28,兩位數百位加,5549+280=5829
九.任意兩位數頭加1乘法
任意兩個十位數相乘,都可按頭加1方法計算:頭加1後,頭乘頭,尾乘尾,將兩個積連接起來後,有兩比,這兩比是非常關鍵的,必須牢記。第一是比首,就是被乘數首比乘數首小幾或大幾,大幾就加幾個乘數尾,小幾就減幾個乘數尾。第二是比兩個尾數的和比10大幾或小幾,大幾就加幾個乘數首,小幾就減幾個乘數首。加減位置是:一位數十位加減,兩位數百位加減。如:35×28=980,計算程序是:(3+1)×2=8,5×8=40,相連為840,這不是應求的 積數,還有兩比,一是比首,3比2大1,就要加一個乘數尾,加8,二是比尾,5+8=13,13比10大3,就加3個乘數首,3×2=6,8+6=14,兩位數百位加,840+140=980。再如:28×35=980, 計算程序是:(2+1)×3=9,8×5=40,相連位940,一是比首,2比3小1,減一個乘數尾,減5,二是比尾,8+5=13,比10大3,加三個3,3×3=9,9-5=4,一位數十位加,940+40=980。 袖裡吞金速算表示數的方法是以左手五指設點作為數碼盤,每個手指表示一位數,五個手指可表示個、十、百、千、萬五位數字。每個手指的上、中、下三節分別表示1-9個數。每節上布置著三個數碼,排列的規則是分左、中、右三列,手指左邊逆上(從下到上)排列1、2、3:手指中間順下(從上到下)排列4、5、6:手指右邊逆上排列7、8、9。袖裡吞金的計算方法是採用心算辦法利用大腦形象再現指算計算過程而求出結果的方法。它把左手當作一架五檔的虛算盤,用右手五指點按這個虛算盤來進行計算。記數時要用右手的手指點左手相對應的手指。其明確分工是:右手拇指/專點左手拇指,右手食指專點左手食指,右手中指專點左手中指,右手無名指專點左手無名指,右手小指專點左手小指。對應專業分工各不相擾。哪個手指點按數,哪個手指就伸開,手指不點按數時彎屈,表示0。再配合珠算口訣,便可進行十萬位以內的任意數的加減乘除四則運算。
A.乘法速算
一.前數相同的:
1.1.十位是1,個位互補,即A=C=1,B+D=10,S=(10+B+D)×10+A×B
方法:百位為二,個位相乘,得數為後積,滿十前一。
例:13×17
13 + 7 = 2- - ( 「-」在不熟練的時候作為助記符,熟練後就可以不使用了)
3 × 7 = 21
-----------------------
221
即13×17= 221
1.2.十位是1,個位不互補,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B
方法:乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一。
例:15×17
15 + 7 = 22- ( 「-」在不熟練的時候作為助記符,熟練後就可以不使用了)
5 × 7 = 35
-----------------------
255
即15×17 = 255
1.3.十位相同,個位互補,即A=C,B+D=10,S=A×(A+1)×10+A×B
方法:十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積
例:56 × 54
(5 + 1) × 5 = 30- -
6 × 4 = 24
----------------------
3024
1.4.十位相同,個位不互補,即A=C,B+D≠10,S=A×(A+1)×10+A×B
方法:先頭加一再乘頭兩,得數為前積,尾乘尾,的數為後積,乘數相加,看比十大幾或小幾,大幾就加幾個乘數的頭乘十,反之亦然
例:67 × 64
(6+1)×6=42
7×4=28
7+4=11
11-10=1
4228+60=4288
----------------------
4288
方法2:兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
例:67 × 64
6 ×6 = 36- -
(4 + 7)×6 = 66 -
4 × 7 = 28
----------------------
4288
二、後數相同的:
2.1. 個位是1,十位互補 即 B=D=1, A+C=10 S=10A×10C+101
方法:十位與十位相乘,得數為前積,加上101.。
- -8 × 2 = 16- -
101
-----------------------
1701
2.2. <不是很簡便>個位是1,十位不互補 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1
方法:十位數乘積,加上十位數之和為前積,個位為1.。
例:71 ×91
70 × 90 = 63 - -
70 + 90 = 16 -
1
----------------------
6461
2.3個位是5,十位互補 即 B=D=5, A+C=10 S=10A×10C+25
方法:十位數乘積,加上十位數之和為前積,加上25。
例:35 × 75
3 × 7+ 5 = 26- -
25
----------------------
2625
2.4<不是很簡便>個位是5,十位不互補 即 B=D=5, A+C≠10 S=10A×10C+525
方法:兩首位相乘(即求首位的平方),得數作為前積,兩十位數的和與個位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
例: 75 ×95
7 × 9 = 63 - -
(7+ 9)× 5= 80 -
25
----------------------------
7125
2.5. 個位相同,十位互補 即 B=D, A+C=10 S=10A×10C+B100+B2
方法:十位與十位相乘加上個位,得數為前積,加上個位平方。
例:86 × 26
8 × 2+6 = 22- -
36
-----------------------
2236
2.6.個位相同,十位非互補
方法:十位與十位相乘加上個位,得數為前積,加上個位平方,再看看十位相加比10大幾或小幾,大幾就加幾個個位乘十,小幾反之亦然
例:73×43
7×4+3=31
9
7+4=11
3109 +30=3139
-----------------------
3139
2.7.個位相同,十位非互補速演算法2
方法:頭乘頭,尾平方,再加上頭加尾的結果乘尾再乘10
例:73×43
7×4=28
9
2809+(7+4)×3×10=2809+11×30=2809+330=3139
-----------------------
3139
三、特殊類型的:
3.1、一因數數首尾相同,一因數十位與個位互補的兩位數相乘。
方法:互補的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補。
例: 66 × 37
(3 + 1)× 6 = 24- -
6 × 7 = 42
----------------------
2442
3.2、一因數數首尾相同,一因數十位與個位非互補的兩位數相乘。
方法:雜亂的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看非互補的因數相加比10大幾或小幾,大幾就加幾個相同數的數字乘十,反之亦然
例:38×44
(3+1)*4=12
8*4=32
1632
3+8=11
11-10=1
1632+40=1672
----------------------
1672
3.3、一因數數首尾互補,一因數十位與個位不相同的兩位數相乘。
方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看不相同的因數尾比頭大幾或小幾,大幾就加幾個互補數的頭乘十,反之亦然
例:46×75
(4+1)*7=35
6*5=30
5-7=-2
2*4=8
3530-80=3450
----------------------
3450
3.4、一因數數首比尾小一,一因數十位與個位相加等於9的兩位數相乘。
方法:湊9的數首位加1乘以首數的補數,得數為前積,首比尾小一的數的尾數的補數乘以湊9的數首位加1為後積,沒有十位用0補。
例:56×36
10-6=4
3+1=4
5*4=20
4*4=16
---------------
2016
3.5、兩因數數首不同,尾互補的兩位數相乘。
方法:確定乘數與被乘數,反之亦然。被乘數頭加一與乘數頭相乘,得數為前積,尾乘尾,得數為後積。再看看被乘數的頭比乘數的頭大幾或小幾,大幾就加幾個乘數的尾乘十,反之亦然
例:74×56
(7+1)*5=40
4*6=24
7-5=2
2*6=12
12*10=120
4024+120=4144
---------------
4144
3.6、兩因數首尾差一,尾數互補的演算法
方法:不用向第五個那麼麻煩了,取大的頭平方減一,得數為前積,大數的尾平方的補整百數為後積
例:24×36
3>2
3*3-1=8
6^2=36
100-36=64
---------------
864
3.7、近100的兩位數演算法
方法:確定乘數與被乘數,反之亦然。再用被乘數減去乘數補數,得數為前積,再把兩數補數相乘,得數為後積(未滿10補零,滿百進一)
例:93×91
100-91=9
93-9=84
100-93=7
7*9=63
---------------
8463
B、平方速算
一、求11~19 的平方
同上1.2,乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一
例:17 × 17
17 + 7 = 24-
7 × 7 = 49
---------------
289
三、個位是5 的兩位數的平方
同上1.3,十位加1 乘以十位,在得數的後面接上25。
例:35 × 35
(3 + 1)× 3 = 12--
25
----------------------
1225
四、十位是5 的兩位數的平方
同上2.5,個位加25,在得數的後面接上個位平方。
例: 53 ×53
25 + 3 = 28--
3× 3 = 9
----------------------
2809
四、21~50 的兩位數的平方
求25~50之間的兩數的平方時,記住1~25的平方就簡單了, 11~19參照第一條,下面四個數據要牢記:
21 × 21 = 441
22 × 22 = 484
23 × 23 = 529
24 × 24 = 576
求25~50 的兩位數的平方,用底數減去25,得數為前積,50減去底數所得的差的平方作為後積,滿百進1,沒有十位補0。
例:37 × 37
37 - 25 = 12--
(50 - 37)^2 = 169
--------------------------------
1369
C、加減法
一、補數的概念與應用
補數的概念:補數是指從10、100、1000……中減去某一數後所剩下的數。
例如10減去9等於1,因此9的補數是1,反過來,1的補數是9。
補數的應用:在速算方法中將很常用到補數。例如求兩個接近100的數的乘法或除數,將看起來復雜的減法運算轉為簡單的加法運算等等。
D、除法速算
一、某數除以5、25、125時
1、 被除數 ÷ 5
= 被除數 ÷ (10 ÷ 2)
= 被除數 ÷ 10 × 2
= 被除數 × 2 ÷ 10
2、 被除數 ÷ 25
= 被除數 × 4 ÷100
= 被除數 × 2 × 2 ÷100
3、 被除數 ÷ 125
= 被除數 × 8 ÷1000
= 被除數 × 2 × 2 × 2 ÷1000
在加、減、乘、除四則運算中除法是最麻煩的一項,即使使用速演算法很多時候也要加上筆算才能更快更准地算出答案。因本人水平所限,上面的演算法不一定是最好的心演算法
其它
由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。
這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:
⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。
□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--
□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
7536×2=15072
乘數為2的進位規律是「2滿5進1」
7×2本個4,後位5,滿5進1,4+1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,6+1得7
6×2本個2,無後位,得2

❻ 3/23x65用簡便方法等於多少過程。

題目出錯了吧,還是13而不是23吧。否則無所謂簡便方法。

❼ 數學簡便計算怎麼做

❽ 3.6×2.5的簡便計算

3.6×2.5的簡便計算:

3.6x2.5

=0.9x(4x2.5)

=0.9x10

=9

(8)x653點二用簡便方法怎麼寫擴展閱讀

簡便計算方法:

1、基準數法

若干個都接近某數的數相加,可以把某數作為基準數,然後把基準數與相加的個數相乘,再加上各數與基準數的差,就可以得到計算結果。

例如:81+85+82+78+79

=80x5+(1+5+2-2-1)

=400+5

=405

2、拆分法

主要是拆開後的一些分數互相抵消,達到簡化運算的目的,一般形如1/ax(a+1)的分數可以拆分成。1/a-1/a+1。

例如:1/1x2+1/2x3+1/3x4+1/4x5+1/5x6

=1_1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6

=1-1/6(加減互相抵消,手機打不出來)

=5/6

❾ 一點二五乘三點二用簡便方法計算

1.25×3.2
=(1.25×8)×0.4
=10×0.4
=4

❿ 98x65用簡便計算怎麼做

98x65

=(100-2)×65

=6500-130

=6370


(10)x653點二用簡便方法怎麼寫擴展閱讀:

數學簡便計算方法:

1、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

2、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

3、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。

4、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

閱讀全文

與x653點二用簡便方法怎麼寫相關的資料

熱點內容
如何學初三英語最有效的方法 瀏覽:493
快速簡單安全的減肥方法 瀏覽:933
常用硫酸制備方法 瀏覽:814
非淋性前列腺炎的治療方法 瀏覽:678
過濾煙嘴使用方法 瀏覽:550
臉部紅血絲的治療方法 瀏覽:329
雙面羊絨的邊如何縫制方法視頻 瀏覽:754
腦血管堵塞手腳無力用什麼方法治 瀏覽:534
貴州學習方法哪裡學 瀏覽:408
變壓器串連接方法 瀏覽:399
愛衛唾液試紙使用方法 瀏覽:624
魚鉤魚線魚竿的連接方法 瀏覽:245
一建各科內各種計算方法編制方法 瀏覽:577
葛藤蔓的種植方法 瀏覽:505
小米平板的照片在哪裡設置方法 瀏覽:691
毛囊增生怎麼治療方法 瀏覽:568
99999999用簡便方法計算 瀏覽:332
蔚來汽車倒車剎車異響解決方法 瀏覽:176
蝗蟲飛機的製作方法簡單 瀏覽:948
預防治療近視的方法 瀏覽:61