1. 簡便運算的技巧是什麼
簡便運算方法大全
一、什麼是簡便運算
「簡便運算」是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用於加法交換律和乘法交換律。
1/4
(二)、結合律
(1)加括弧法
①當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要
2/4
變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括弧法
①當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
②當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
①分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
③注意構造,讓算式滿足乘法分配律的條件。
3
2. 一年級百位豎式加減計算簡便方法
豎式加法例子解析812+173
解題思路:兩個加數的個位對齊,再分別在相同計數單位上的數相加,相加結果滿10則向高位進1,高位相加需要累加低位進1的結果。
解題過程:
步驟一:2+3=5
步驟二:1+7=8
步驟三:8+1=9
根據以上計算步驟組合計算結果為985
驗算:985-812=173
(2)一年級簡便計算方法的講解擴展閱讀&驗算結果:將減數與被減數個位對齊,再分別與對應計數單位上的數相減,不夠減的需向高位借1,依次計算可以得出結果,減數小於被減數將兩數調換相減最後結果加個負號;小數部分相減可參照整數相減步驟;
解題過程:
步驟一:5-2=3
步驟二:8-1=7
步驟三:9-8=1
根據以上計算步驟組合計算結果為173
存疑請追問,滿意請採納
3. 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
4. 一年級數學小竅門知識
破十法:
加九減一,加八減二,加七減三,加六減四,加五見五
數字拆分法
9+6=9+(1+5)=(9+1)+5=15
一五6,二四6,三三6,四二6,五一6;6的組成沒遺漏。
一六7,二五7,三四7,四三7,五二7,六一7;7的組成記仔細。
一七8,二六8,三五8,四四8,五三8,六二8,七一8;8的組成記全它。
一八9,二七9,三六9,四五9,五四9,六三9,七二9,八一9;
9的組成全都有。
一九10,二八10,三七10,四六10,五五10,六四10,七三10,八二10,九一10;10的組成共九句。
湊十歌
一九一九好朋友,
二八二八手拉手,
三七三七真親密,
四六四六一起走,
五五湊成一雙手。
一加九,十隻小蝌蚪,
二加八,十隻花老鴨,
三加七,十隻老母雞,
四加六,十隻金絲猴,
五加五,十隻大老虎。
20以內的進位加法
看大數,分小數,湊成十,加剩數。
退位減法
退位減法要牢記,先從個位來減起;
哪位不夠前位退,本位加十莫忘記;
如果隔位退了1,0變十來最好記。
連續退位的減法
看到0,向前走,看看哪一位上有。
借走了往後走,0上有點看作9
例如1:加法8+5 看到8就想到2,因此5可以分成2和3,8和2組成10,10+3=13,所以8+5=13。
例如2:減法15-9
第一種:15可以分成10和5,10-9=1,再用1+5=6,所以15-9=6;
第二種:9可以分成5和4,15-5=10,10-4=6,所以15-9=6。
運用湊十法與破十法解答下列各題
7+8= 6+9= 9+4= 11-4= 6+7= 7+4=
12-9= 14-8= 2+9= 13-6= 14-5= 8+8=
4+9= 5+7= 14-6= 15-7= 8+4= 14-7=
5+8= 6+8= 7+4= 14-7= 12-8=
13-9= 12-8= 3+9= 4+9= 12-9=
5+6= 2+9= 12-9= 14-7= 13-8=
2+9= 4+7= 6+4= 3+7= 13-7=
( )+5=10 ( )+4=7 ( )-3=3 ( )-6=2 9-( )=2
3+( )=10 6-( )=1 ( )-7=3 ( )+2=5
0+( )=4
( )-0=6 10-( )=8 4+( )=9 7-( )=6 ( )-3=0
( )+7=8 5-( )=2 ( )-5=5 ( )+6=9 1+( )=8
7-( )=7 6+( )=10 ( )+2=8 ( )-3=4 3+( )=4
9-( )=0 ( )+6=7 4+( )=8 ( )-9=1 ( )-3=5
( )+1=4 ( )-7=4 ( )+8=10 9-( )=4 ( )-5=1
4+( )=10 ( )+5=5 ( )-2=5 10-( )=2 ( )-6=4
學習10以內數加減法的方法
一、加法:大數記心裡,小數往上數,如4+2= 把4記在心裡,往上數兩個數,5、6, 之後得出結果4+2=6
二、減法:大數記在心裡,小數往下數,如6-3= 把6記在心裡,往下數三個數,5、4、3, 之後得出結果6-3=3
家長需配合每日為寶貝出30道10以內加減法,提升孩子的算術能力,注意不要讓孩子數指頭,養成習慣不好改,培養心算能力。
20以內加減法竅門
20以內不進位加減法
1、11-20的數可以和孩子玩猜數游戲。用3種方式描述數:
① 個位是2,十位是1 。
② 1個十,5個一。
③ 比11大,比13小。
用這些方式描述數,讓孩子猜,或者反過來孩子描述大人猜,直到熟練。
2、用計數器撥數。
家長說數,孩子撥數。邊撥邊說數的組成。如12是由1個十和2個一組成的。
在一年級的數學教學中,一般的孩子在學前班時就學會了10以內加減法,進入小學後,20以內不進位不退位的加減法稍加練習也能熟練掌握。但是,孩子學習進位加法和退位減法就不是那麼輕鬆了,部分學生的計算速度大大下滑,計算的准確率也降低了,兩極分化初露端倪。有的學生由於計算速度跟不上,開始拖拉作業,成為數學學習困難者。
那麼,到底是什麼原因造成了孩子學習20以內進位加法以及退位減法的困難呢?小編認為,這和我們運用的計算進位加法和退位減法的演算法有關。演算法不外乎數數法和數字推理法,數數法就是通過數數來計算,包括藉助實物數數和單純數數兩種。數字推理法指的是包含湊十法、拆分法等的運用數字進行推算的方法。
然而,數字推理法對學生的思維要求高,需要的思維步驟也多,並不利於學生熟練掌握最終到達到脫口而出的地步。以運用最為廣泛的湊十法為例,求9加6等於幾,學生在解決問題之前就需要這幾個思考過程:一、判定該題是不是進位加法;二、如果是進位加法,怎樣才能湊成10。這樣確定方法後才能進行下面的運算:
9+6=9+(1+5)=(9+1)+5=10+5=15
從上面的運算中可以看出,這是一個運用加法結合律進行簡便計算的一個過程,而且屬於不能直接運用題中數據,需要拆分才能進行簡便運算的一類。所以,看似簡單的湊十法,其思維是不簡單的,包含著一系列邏輯推理過程,它的認知基礎與一年級學生所具有的知識結構和思維能力之間存在一定的距離,一定程度上造成了學生計算的困難。那麼,怎樣的方法才能更好地解決這一難題呢?
20以內的進位加法。
怎樣才能使學生能在較短時間內掌握20以內進位加法呢?其實只要將其轉化為學生已經掌握的10以內減法就行了,歸納下來口訣是:「加九減一,加八減二,加七減三,加六減四,加五減五。」怎樣用口訣,以「加九減一」為例,「加九減一」是指一個數與9相加,將這個數減去1作為它們和的個位。
例如:8+9=( )就拿 8減去1結果7,用7來作和的個位,即8+9=17, 5+9=( )就拿5減去1等於4,用4來作和的個位,即5+9=14。
「加八減二,加七減三,加六減四,加五減五」的方法同上
20以內退位減法。
20以內退位減法與20以內進位加法相反,就是把20以內退位減法轉化為10以內加法。口訣是:「減九加一,減八加二,減七加三,減六加四,減五加五。」如何用口訣,以「減九加一」為例,「減九加一」是指一個數減去9,將這個數的個位加上1所得的結果就是它們的差。
例如:17-9=( )就拿17的個位7加上1結果是8,即17-9=8,13-9=( )就拿13的個位3加上1結果是4,即13-9=4
例如:17-2=( )分清哪個是個位,哪個是十位,先看個位數能不能減,7-2如果夠減,就用十以為的減法,7記在心裡,然後倒數6,5,得5,然後十位的1不變,就得了15.
「減八加二,減七加三,減六加四,減五加五」與「減九加一」的方法一樣。
一年級學生還不能正確的進行抽象思維,採用以上方法,能使習慣依賴擺實物來計算的學生脫離實物也能快速准確的算出結果,避免了死記硬背,盲目多練,提高了運算速度,降低了出錯率,減輕了學生的學習負擔。
5. 小學一年級計算簡便方法
一年級簡便計算過程分析18+23+32
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
18+23+32
=18+32+23
=50+23
=73
(5)一年級簡便計算方法的講解擴展閱讀\計算過程:兩個加數的個位對齊,再分別在相同計數單位上的數相加,相加結果滿10則向高位進1,高位相加需要累加低位進1的結果。
解題過程:
步驟一:8+2=0 向高位進1
步驟二:1+3+1=5
根據以上計算步驟組合計算結果為50
存疑請追問,滿意請採納
6. 小學數學簡便計算公式
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
7. 簡便計算的竅門和技巧是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
8. 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
9. 加減法怎麼教孩子簡便一年級
先教分解
如果想讓孩子真正的理解加減的意義,那麼,就要讓孩子操作實物,不斷的練習,從練習中理解。我還是推薦這一種,因為都說數學是思維的體操,理解加減的意義才能真正的讓孩子的思維得到鍛煉。加法,實際上就是:將兩個集合和在一起,變成一個集合。減法:將一個集合分開,分成兩個。孩子真正的理解加減法的意義,不是算會那道題,而是理解加減法之間的關系。比如:6個蘋果,可以分成2個和4個蘋果,也可以反過來說是4個和2個蘋果,同時,2個和4個蘋果(或者4個蘋果和2個蘋果)合起來就是6個蘋果。也就是說:1、從分解組合開始教孩子,一邊分,一邊用語言表述,一定要用嘴巴說出來,能說出來的孩子,表示她自己真的掌握了。2、從5以內的開始。先從分解2開始。3、每次分開後表述完,要記得在合起來。希望可以幫助到您
打基礎的方法
1、學數數
學計算之前先學數數,這誰都知道,但是利用多種數數形式來為計算打基礎,卻被相當多的父母所忽視。不少父母在孩子會唱讀1~100之後就認為孩子已學會了數數,而可以教計算了,但實際上孩子並沒有真正建立數的概念,也沒有真正掌握計數的技巧。
數數的內容其實很多,除了要建立數的一對一的概念以外,還要包括多種數數的技能,主要形式有:
①N加1,即按遞增1的順序正著數,這是學N加1計算的基礎;
②N減1,即按遞減1的順序倒著數,這是學N減1計算的基礎;
③數單數,建立奇數概念;
④數雙數,建立偶數概念;
⑤逢10數,建立進位概念;
⑥逢5數,將5作為一個基本單元,這是一個很重要的數數技能,因為在提高數數和計算技能方面,5的重要性僅次於10。
2、計算N加1,凡是能正著依次數數並理解其含義是依次遞增1個的幼兒,都能輕而易舉地學會計算N加1,包括10加1、20加1、99加1乃至100加1。
3、計算N減1,凡是能倒著數數並理解其含義是依次遞減1個的幼兒都能學會計算N減1的題,包括11減1,21減1、100減1乃至101減1。
4、整10相加或相減,如10加10、20加10、……90加10,凡是會逢10數數並理解其含義是依次遞增或遞減10個的幼兒都能很容易地學會。