導航:首頁 > 知識科普 > 蛋白質的測定方法各有哪些優缺點

蛋白質的測定方法各有哪些優缺點

發布時間:2022-06-12 23:28:35

❶ 常用來測定蛋白質含量的方法有哪些優缺點是什麼

1、凱氏定氮法

凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。

由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。

優點:可用於所有食品的蛋白質分析中;操作相對比較簡單;實驗費用較低;結果准確,是一種測定蛋白質的經典方法;用改進方法(微量凱氏定氮法)可測定樣品中微量的蛋白質。

缺點:凱氏定氮法只是一個氧化還原反應,把低價氮氧化並轉為氨鹽來測定,而不能把高價氮還原為氮鹽的形式,所以不可以測出物質中所有價態的氮含量。

2、雙縮脲法

雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。

當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。

優點:測定速度較快,干擾物質少,不同蛋白質產生的顏色深淺相近。

缺點:①靈敏度差; ② 三羥甲基氨基甲烷、一些氨基酸和EDTA等會干擾該反應。

3、酚試劑法

取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。

優點:靈敏度高,對水溶性蛋白質含量的測定很有效。

缺點:①費時,要精確控制操作時間;②酚法試劑的配製比較繁瑣。

4、紫外吸收法

大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。

取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。

優點:簡便、靈敏、快速,不消耗樣品,測定後能回收。 

缺點:①測定蛋白質含量的准確度較差,專一性差; ②干擾物質多,若樣品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物質,會出現較大的干擾。

5、考馬斯亮藍法

考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。

在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。

一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。

優點:靈敏度高,測定快速、簡便,干擾物質少,不受酚類、游離氨基酸和緩沖劑、絡合劑的影響,適合大量樣品的測定。

缺點:由於各種蛋白質中的精氨酸和芳香族氨基酸的含量不同,因此用於不同蛋白質測定時有較大的偏差。

❷ 測定蛋白質活性的方法有哪些 細胞試驗與動物實驗的優缺點

定氮法,雙縮尿法(Biuret法)、Folin-酚試劑法(Lowry法)和紫外吸收法。考馬斯亮藍法(Bradford法)。
凱氏定氮
靈敏度低,適用於0.2~
1.0mg氮,誤差為
±2%
費時
8~10小時
將蛋白氮轉化為氨,用酸吸收後滴定
非蛋白氮(可用三氯乙酸沉澱蛋白質而分離)
用於標准蛋白質含量的准確測定;干擾少;費時太長
雙縮脲法(Biuret法)
靈敏度低
1~20mg
中速
20~30分鍾
多肽鍵+鹼性Cu2+®紫色絡合物
硫酸銨;Tris緩沖液;某些氨基酸
用於快速測定,但不太靈敏;不同蛋白質顯色相似
紫外吸收法
較為靈敏
50~100mg
快速
5~10分鍾
蛋白質中的酪氨酸和色氨酸殘基在280nm處的光吸收
各種嘌吟和嘧啶;
Folin-酚試劑法(Lowry法)
靈敏度高
~5mg
慢速
40~60分鍾
雙縮脲反應;磷鉬酸-磷鎢酸試劑被Tyr和Phe還原
硫酸銨;Tris緩沖液;甘氨酸;
各種硫醇
耗費時間長;操作要嚴格計時;顏色深淺隨不同蛋白質變化
考馬斯亮藍法(Bradford法)
靈敏度最高
1~5mg
快速5~15分鍾
考馬斯亮藍染料與蛋白質結合時,其lmax由465nm變為595nm
強鹼性緩沖液;
SDS
最好的方法;干擾物質少;顏色穩定;
顏色深淺隨不同蛋白質變化

❸ 常用來測定蛋白質含量的方法有哪些,優缺點是什麼

①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。

❹ 請問,測定蛋白質相對分子質量各方法的優缺點,謝謝測定蛋白質相對分子質量方法優缺點

用離心方法分離
和亞細胞物質的基本原理是根據它們在液體介質中或者沉降速度不同而形成不同的區帶,或者它們的密度不同而停留在液體介質中不同的位置而把它們一一分開.
前者是沉降速度法,應用該法時液體介質的最大密度要小於樣品中最小顆粒的密度,離心時選用高轉速和短時間;後者是沉降平衡法,應用該法時液體介質的最大密度要大於樣品中最小顆粒的密度,離心時選用較低轉速和較長時間.
如果測蛋白質的相對分子量可用速度區帶(或速度梯度)離心
本法是將樣品放在一個連續的密度梯度液體上,通過離心,大分子量蛋白質沉降快,小分子量沉降慢.經過一段時間,相同分子量的蛋白質就在同一深度形成一條
,因此把各種分子量大小分開來.它適用於分離密度相同、而大小不同的物質,蛋白質組份密度都差不多,但分子量不一樣,用本法很容易將其分開.但對密度不同、大小類似的物質則不易分離.
蔗糖梯度是一種常用的介質.用不同濃度的蔗糖溶液(5%-60%)配成梯度,用於梯度離心.再分別進行收集處於不同區帶里的各個組份.

❺ 測定蛋白質含量的方法 缺點

①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。

❻ 實驗室測定蛋白質分子量的方法有哪些

測定蛋白質分子量的常用方法

粘度法、凝膠過濾層析法、凝膠滲透色譜法、SDS-凝膠電泳、滲透壓法、質譜法包括電噴霧離子化質譜技術和基質輔助激光解吸電離質譜技術、光散射法(多角度激光散射)、沉降法(超速離心法)。

1、粘度法

一定溫度條件下,高聚物稀溶液的粘度與其分子量之間呈正相關性,隨著分子量的增大,聚合物溶液的粘度增大。通過測定高聚物稀溶液粘度隨濃度的變化,即可計算出其平均分子量(粘均分子量)。

如果高聚物分子的分子量愈大,則它與溶劑間的接觸表面也愈大,摩擦就大,表現出的特性粘度也大。特性粘度和分子量之間的經驗關系式為:

8、電噴霧離子化質譜技術

電噴霧離子化質譜技術(ESI-MS)是在毛細管的出口處施加一高電壓,所產生的高電場使從毛細管流出的液體霧化成細小的帶電液滴,隨著溶劑蒸發,液滴表面的電荷強度逐漸增大,最後液滴崩解為大量帶一個或多個電荷的離子,致使分析物以單電荷或多電荷離子的形式進入氣相的質譜技術。ESI-MS 測定蛋白質大分子是根據一簇多電荷的質譜峰群,通過解卷積的方式計算得到蛋白質的分子量,由於ESI-MS可以產生多電荷峰,因此使得測試的分子質量范圍大大擴大。

優缺點:(1)對樣品的消耗少,不會造成樣品的大量浪費;(2)對樣品分子質量測試靈敏度、分辨力和准確度都相當高;(3)能夠方便地與多種分離技術聯用,如毛細管電泳、高效液相色譜等,是解決非揮發性、熱不穩定性、極性強的復雜組分化合物的定性定量的高靈敏度檢測方法

9、基質輔助激光解吸電離質譜技術

基質輔助激光解吸電離質譜技術(MALDI-MS)是將待測物懸浮或溶解在一個基體中,基體與待測物形成混晶,當基體吸收激光的能量後,均勻傳遞給待測物,使待測物瞬間氣化並離子化。基體的作用在於保護待測物不會因過強的激光能量導致化合物被破壞。MALDI的原理是用激光照射樣品與基質形成的共結晶薄膜,基質從激光中吸收能量傳遞給生物分子,而電離過程中將質子轉移到生物分子或從生物分子得到質子,而使生物分子電離的過程。TOF的原理是離子在電場作用下加速飛過飛行管道,根據到達檢測器的飛行時間不同而被檢測即測定離子的質荷比(M/Z)與離子的飛行時間成正比,檢測離子。

優缺點:(1)同ESI-MS 一樣對樣品的消耗很少;(2)隨著質量分析器的不斷改進、新的基質的不斷發現和應用以及延遲萃取技術的使用,使得MALDI-MS 的最高解析度不斷提高,甚至超過ESI-MS;(3)MALDI-MS 單電荷峰佔主要部分,碎片峰少,非常有利於對復雜混合物的分析,且能忍受較高濃度的鹽、緩沖劑和其他難揮發成分,降低了對樣品預處理的要求;(4)MALDI-TOF 質譜對生物大分子分子量的測定范圍是所有測試技術中最廣的。

❼ 各種蛋白互作檢測方法有哪些優缺點

雙雜交技術 原理基於真核細胞轉錄因子的結構特殊性,這些轉錄因子通常需要兩個或以上相互獨立的結構域組成。分別使結合域和激活域同誘餌蛋白和獵物蛋白形成融合蛋白,在真核細胞中表達,如果兩種蛋白可以發生相互作用,則可使結合域和激活域在空間上充分接近,從而激活報告基因。 缺點:自身有轉錄功能的蛋白會造成假陽性。融合蛋白會影響蛋白的真實結構和功能。不利於核外蛋白研究,會導致假隱性。
熒光共振能量轉移技術 指兩個熒光法色基團在足夠近(<100埃)時,它們之間可發生能量轉移的現象。熒光共振能量轉移技術可以研究分子內部對某些刺激發生的構象變化,也能研究分子間的相互作用。它可以在活體中檢測,非常靈敏,分辯率高,能夠檢測大分子的構象變化,能夠定性定量的檢測相互作用的強度。 缺點 此項技術要求發色基團的距離小於100埃。另外設備昂貴,還需要融合GFP給蛋白標記。http://doc.bio1000.com/list-81.html 生化標記技術文檔,生化標記技術文檔下載,生物幫上面有介紹的。

❽ 常用的蛋白質含量測定方法有哪些

①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。

❾ 蛋白質含量測定方法總結

蛋白質檢測方法總結 雙縮脲法: 將兩分子尿素分子加熱脫去一分子氨而形成的就是雙縮脲 (NH2-CO-NH-CO-NH2) . 雙縮脲在鹼性溶液中與 CU2+結合形成紫紅色絡合物, 這樣...

❿ 比較分光光度法測定蛋白質含量與其他幾種常用蛋白質測定方法的優缺點

優點:1、測量靈敏度高,快速,方便。
2、低濃度蛋白質含量可檢測。
缺點:1、容易受溶液中雜質的影響。
2 、標准曲線不易做准確。

閱讀全文

與蛋白質的測定方法各有哪些優缺點相關的資料

熱點內容
如何預防溺水的方法有多少種 瀏覽:671
dds精華使用方法 瀏覽:484
自動血糖儀的使用方法圖片 瀏覽:24
如何不用手指指人的三個方法 瀏覽:50
沉積學研究的基本方法 瀏覽:983
基金凈資產的計算方法在哪裡約定 瀏覽:397
怎麼快速學習數學的方法 瀏覽:258
鑒定母牛發情常用哪些方法 瀏覽:11
學生黨下橫叉的快速方法 瀏覽:506
綠蘿生蟲子怎麼辦最快的方法 瀏覽:514
女性最佳取環方法 瀏覽:363
手機信號最強的方法 瀏覽:802
圖片粘貼排版方法視頻 瀏覽:373
抗疫和防疫的方法和技巧手抄報 瀏覽:75
小學生如何能快速答卷的方法 瀏覽:76
當體溫升高時常用哪些方法降溫 瀏覽:38
車窗拋物方法視頻教程 瀏覽:604
鹽水去頭屑的最佳方法 瀏覽:227
冬季開花花卉怎麼養正確方法圖文 瀏覽:957
如何製作腐植酸的方法 瀏覽:47