A. 3200乘25+25的和怎樣簡便計算
3200乘25+25
=(400x8)x25+25
=400x200+25
=80000+25
=80025
B. 28x25簡便計算有幾種
28x25
=(7x4)x25
=7x(4x25)
=7x100
=700
C. 800÷25的簡便演算法怎麼算
800÷25=32。
800÷25的簡便運算如下:
800÷25
=(800×4)÷(25×4)
=(800×4)÷100
=3200÷100
=32
或者:
800÷25
=8×100÷25
=8×(100÷25)
=8×4
=32
(3)80025用簡便方法怎麼計算擴展閱讀:
乘法常用簡便計算規律:
1)乘法交換律:a*b=b*a;
2)乘法結合律:a*b*c=(a*b)*c=a*(b*c)
3)乘法分配律:(a+b)*c=a*c+b*c;(a-b)*c=a*c-b*c
除法常用簡便計算規律:
1)商不變的性質即被除數與除數同乘以或同除以一個數(零除外),商不變。
a/b=(a*n)/(b*n)=(a/n)/(b/n)
2)兩個數的和(差)除以一個數,可以用這個數分別去除這兩個數(在都能整除的情況下),再求兩個商的和(差)。
(a+b)/c=a/c+b/c;(a-b)/c=a/c-b/c
D. 用簡便方法計算28x25
簡便計算過程方法如下
解:28x25
=(20+8)×25
=20×25+8×25
=500+200
=700
E. 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
F. 用簡便方法計算怎樣做
乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
性質
編輯
減法1
a-b-c=a-(b+c)
減法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
G. 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(7)80025用簡便方法怎麼計算擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
H. 800除25怎樣用簡便方法計算
800÷25=32。
簡便計算過程如下:
800÷25
=(800×4)÷(25×4)(利用25這個數的特點,25和4相乘恰好等於100。同時運用被除數與除數同乘以或同除以一個數(零除外),商不變的性質)
=3200÷100
=32
(8)80025用簡便方法怎麼計算擴展閱讀:
商不變的性質即被除數與除數同乘以或同除以一個數(零除外),商不變。a/b=(a*n)/(b*n)=(a/n)/(b/n)。
除法運算性質
①若某數除以(或乘)一個數,又乘(或除以)同一個數,則這個數不變。
例如:68÷17×17=68(或68×17÷17=68)。
②一個數除以幾個數的積,可以用這個數依次除以積里的各個因數。
例如:320÷(2×5×8)=320÷2÷5÷8=4。
③一個數除以兩個數的商,等於這個數先除以商中的被除數,再乘商中的除數。
例如:56÷(8÷4)=56÷8×4=28。