導航:首頁 > 解決方法 > 現在的齒輪檢測常用的方法

現在的齒輪檢測常用的方法

發布時間:2022-05-10 00:08:56

Ⅰ 怎樣檢測齒輪和軸承磨損。現在都有什麼方法····謝謝大家··

1. 齒輪磨損快速測定方法。
用測定齒輪磨損的檢測圓盤,並根據大量數據製成可用於對照的表格,可確定齒輪磨損的程度。檢測時只需將副變速軸的鏈輪軸蓋打開,並用拆下的兩顆螺釘將檢測圓盤固定住,再將一帶有磁性的小指針放在副變速軸芯上,則指針隨副變速軸旋轉。測量時,將驅動輪的前後用石塊塞住,以提高檢測精度。選擇好檔位,順向轉動皮帶輪將各嚙合齒輪副的間隙消除,此時,將指針對准圓盤上「0」點,然後,反方向轉動皮帶輪,直到轉動困難(消除所有傳動間隙)或輪胎開始轉動時為止,這時指針所指的讀數即為該檔位的綜合間隙角度。一般檢測兩次。完成一個檔位後,變換檔位,同樣,再測定另一檔位的綜合間隙角,直到所有檔位都測好為止。有些拖拉機不宜卸下鏈輪軸蓋,可將檢測圓盤用兩塊磁鐵吸附在皮帶輪上,隨皮帶輪一起轉動。指針吸附在葉子板上,同樣可測出各檔齒輪綜合間隙角。由於傳動比的變化及鏈條的影響,測得的數據略有變化,但仍能基本反映實際情況。

1 軸承磨損快速測定方法。

用壓鉛法檢測軸承間隙較用塞尺檢測准確,但較費事。

檢測所用的鋁絲應當柔軟,直徑不宜太大或太小,最理想的直徑為間隙的1.5~2倍,實際工作中通常用軟鉛絲進行檢測。

檢測時,先把軸承蓋打開,選用適當直徑的鉛絲,將其截成15~40毫米長的小段,放在軸頸上及上下軸承分界面處,蓋上軸承蓋,按規定扭矩擰緊固定螺栓,然後在擰松螺栓,取下軸承蓋,用千分尺檢測壓扁的鉛絲厚度,求出軸承頂間隙的平均值。

若頂隙太小,可在上、下瓦結合面上加墊。若太大,則減墊、刮研或重新澆瓦。

滑動軸承除了要保證徑向間隙以外,還應該保證軸向間隙。檢測軸向間隙時,將軸移至一個極端位置,然後用塞尺或百分表測量軸從一個極端位置至另一個極端位置的竄動量即軸向間隙。

Ⅱ 齒輪用什麼方法(手段)去檢驗

齒輪檢驗是一個非常專業的范疇。一般的檢驗分兩種,一種叫做單項檢測(分析測量),一種叫做綜合檢驗(功能性檢測)。單項檢驗的項目一般包括:齒形、齒向、跳動、公法線、基節、周累等等。綜合檢驗是用一個精度很高的標准齒輪(master gear)和被檢測的零件嚙合,一般檢測的項目有:單齒、一周、中心距及變化量,再者可以對齒面著色,看接觸斑點的位置和形狀來判斷它的嚙合狀況。所以不管單項還是綜合都是要專門的儀器和量具來檢測的。

Ⅲ 現在的齒輪檢測常用的方法

智泰專業研究齒輪檢測方案提供應用設備。
齒輪檢測儀器主要用到的是三坐標,至於三坐標的選取具體還是要看您要實現什麼要求,詳情登陸中國儀器超市網站,在線咨詢。

檢測的方面有:齒輪傳動精度;齒輪檢測概論;圓柱齒輪單項測量、綜合測量;齒輪整體誤差測量;齒輪副測量;圓錐齒輪、蝸輪蝸桿、齒條測量;齒輪、蝸輪蝸桿測繪;齒輪滾刀、蝸輪滾刀、插齒刀測量。可以實現在一台儀器上實現齒輪檢測的全部測量,是測量齒輪的理想工具。

如何測量齒輪

齒輪測量
一、 齒輪的測量:
漸開線直齒圓柱齒輪的測量:
1. 齒形:對電動工具而言,為影響噪音的次要指標;齒形嚴重超標時,會導致早期磨損加劇;- U0 h% S( U- n) ]5 C8 S3 l
該指標超標到0.03以上時,會導致音量的明顯增加,但其仍屬於連續及平滑的噪音,雖音調較高,但不會導致雜音。齒形超標到0.05以上時,會導致早期磨損加劇;
電鑽,曲線鋸等小型機器的噪音指標,對齒形的敏感程度,不如電圓鋸等重載機器敏感;
齒形評定的時候,要根據嚙合關系,確定合理的評定長度,不能從最開始的點,一直評定到最結束的點。
齒形評定的解析度要設定在0.002MM,太低的解析度,將失去意義;
齒形評定時,會分解為「形狀誤差」和「角度誤差」,那是做工藝分析用的。驗收時,看總的數值就可以了。在汽車等其他領域,在做驗收時,不僅要看總的數值,還要看形狀誤差,通常齒面「中凹」是不允許的。
我們目前還沒有用到「修形齒形」。

2. 齒向:影響齒輪配合的側隙;
通常不導致「載荷沿齒寬方向分布不均」,而引起輪齒折斷;
齒向超標嚴重時,如>0.04時,將導致嚙合的齒輪沒有側向間隙,而導致劇烈連續性的尖叫。
判斷齒向超標的簡單方法是,如果齒向超標,則在同一輪齒上,磨合的光亮面,將分別側重於兩個齒面的兩端。精確的測量方法,是用萬能齒輪測量機進行測量。
檢查齒向時,要注意「有效齒寬」,凡是「齒向曲線」突變方向的點,就是「有效齒寬」結束的位置。
齒向誤差同樣也可以分離為「形狀誤差」和「角度誤差」,同樣,其更多的也是指導工藝只有精密行業與場合,才需要分別要求這兩點,對電動工具而言,更多的關注「角度誤差」就可以了。1 ?1 v6 P, l; j

3. 齒距:導致電動工具噪音的主要源頭。
該項指標的超差,會引起明顯雜音(可以表現為連續性的,也可以表現為不連續性的,主要取決於超標的程度,超標越重,越表現為不連續性噪音,且伴隨強烈振動)。
衡量齒輪的指標有兩個,一是「齒距誤差」,另一個是「齒距累積誤差」,其實兩者是「正相關」的,通常我們以「齒距累積誤差」為仲裁指標;

大小齒輪的「齒距誤差/齒距累積誤差」,如果能夠控制在國標7級,則絕不會產生雜音;8級的「齒距/齒距累積」可以勉強使用,9級以上的精度,則雜音狀況就很糟糕了。
小齒輪對「齒距誤差/齒距累積誤差」的噪音敏感程度,要遠高於大齒輪的敏感程度;
利用齒輪測量機,我們可以很准確地評判該項指標,如果沒有齒輪測量機,則可以用「單
嚙儀」,「雙嚙儀」,「齒跳儀」來間接評判。% f! T4 B" x1 d8 o, j4 q
一般而言,對於軸齒等小齒輪,Fr的指標應該按照如下原則控制:5 j) j; u. W4 Z, Z+ b4 H
電鑽/沖擊鑽/電圓鋸:Fr<0.03;(這類機器的小輪轉速在20000-30000RPN);
曲線鋸:Fr<0.045;(因為曲線鋸對噪音不敏感);1 V; e# i/ s, q2 H( l3 g; N
砂帶機:Fr<0.05(其轉速在10000RPN以下);
對於大齒輪,Fr控制在7級以下,就很好了,8級勉強使用。9級以上就很糟糕了。
1. 齒頂圓,齒根圓:$ w! k1 L I; e- [$ ^8 z2 l: H. T
; I' b9 f4 i x# ]( @0 C
因為電動工具的齒輪都是大變位的齒輪,所以必須控制這兩個參數。但是因為製造的問題和齒輪設計齒頂間隙的問題,這兩個尺寸,存在(+-0.03MM)的誤差,也是可以接受得的。超得更多,就要予以注意了。- a# L) q, O" t6 L ?: V0 l
2. 側隙:為了儲存潤滑油和補償由於溫度、彈性變形、製造誤差及安裝誤差引起的尺寸變動,防止齒輪在長期工作過程中不被卡死,輪齒嚙合必須有一定的間隙。一般控制在0.15-0.20之間。
側隙偏大,通常不會導致噪音,也不會明顯降低嚙合強度;
通常檢驗時,靠控制「公法線長度」來間接控制側隙。公法線的偏差通常在 左右,以保證合理的齒輪配合側隙(0.12-0.20)。7 l' k; W1 E8 Y2 c! y) B7 {0 z
齒輪的安裝精度越高,側隙可以相應越小。9 F6 g; N( y) ]' K
公法線超大時,會導致輪齒偏胖,側隙減小,會增加導致尖叫噪音的風險,和齒輪「抱死」的風險,當然0.02MM以內的偏差,還不至於風險很大;% u5 T5 e& D3 k# m5 P5 d2 Y+ ?, B
公法線偏小時,不會有很多不良影響,但如果超標到0.10MM,則會降低輪齒壽命。/ E1 i/ F; T8 S3 r# t4 j9 g
, u5 W# u+ P3 I- j. i" k) a' \
3. 齒輪的安裝:
6.1中心距:
對於漸開線圓柱齒輪,中心距稍微偏大,不會導致噪音,也不會導致齒面滑移,增加磨損。 通常偏大0.05MM不會有問題,但是不適合偏大0.10MM;0 G e0 O/ Z% E6 c8 Z7 c( T
中心距不適合片小,否則會導致輪齒干涉,導致劇烈噪音和傳動破壞。對於側隙較大的電動工具來說,中心距偏小0.02MM,不至於帶來明顯破壞,但是如果超小0.05MM,則可以產生惡劣後果了。" X3 N+ R7 V! ~% z/ \# y& z9 g' P, ?
6.2平行度:" v; F6 f( U6 s' M8 f/ R! V
兩根軸線交錯,將會最顯著影響側隙,容易導致擠齒尖叫;
兩根軸線不平行,會在一定程度上影響側隙,引起載荷沿齒款方向不均勻;
就側隙而言,前者的影響程度為後者的2倍。5 S4 W* f1 b8 D( X3 L; n
7 磕傷:* v% @8 c+ G% u8 \: k5 ?3 { ]! A2 d) t
輪齒不能有磕傷,否則將導致劇烈的有節奏的,伴隨強烈振動的雜音。
一般用「雙嚙儀」來進行「磕傷」的挑選。( V8 ^: M k3 w# F

二、 圓錐齒的測量:0 f! A# E& P% T7 r4 t; w
6 r" B# W6 s- Y/ v- D
1.工業界的兩種測量方法:- H0 ^: j, I$ T; P# ]' k9 x
1.1運用計量級三坐標測量機,CNC齒輪測量中心進行測量;$ w' {. W8 C' P( ]
用三坐標測量機進行錐齒輪的測量,僅局限於航空航天等單件小批量生產領域,在精度上能夠滿足要求的也只有德國ZEISS,其他三坐標測量機也聲稱可以測量錐齒輪,但其只能測量大模數(模數2以上,以利於測頭回退),低精度的場合(8,9級精度);
三坐標測量可以完成「齒形」,「齒向」,「齒距」等所有指標的測量,但是其測量過程非常緩慢,30顆輪齒,通常要花10來小時才能夠掃描完成;6 f1 _9 I" l _! v" Q, @: m7 w+ _
CNC齒輪測量中心主要應用於汽車等大批量生產領域,其測量精度高,效率高,能測量「齒形」,「齒向」,「齒距」等所有指標,其價格較貴,通常在300-400萬RMB;4 e6 q+ K* Z8 C0 {& Q
1.2常規測量方法:
象電動工具,縫紉機等民用領域,通常採取以下常規的測量方法進行檢查驗收:
齒圈跳動(Fr):更多地反映齒距精度;測量儀器:齒圈跳動測量儀;( I# T) ~9 d$ d" x. w3 M
嚙合區著色檢查:以查核安裝距,軸交角,偏置等指標;測量儀器:嚙合儀;
單嚙合儀:測量切向綜合誤差或一齒切向綜合誤差;測量儀器:嚙合儀(帶感測器)
雙嚙合儀:徑向綜合誤差或一齒徑向綜合誤差;測量儀器:嚙合儀4 Y, C5 a! G) | J( b/ B# u% s
實際測量時,可以根據需要在以上測量方法中進行組合,我司推薦的測量方法是:
1. 運用嚙合儀進行「嚙合區著色檢查」;(必選)
2. 運用齒圈跳動測量儀進行「齒圈跳動(Fr)檢查」;(可選)
3. 運用TTI-120E測量儀,進行「齒距檢查」;(必選)5 B$ o7 W8 T) a+ |1 W
1. 齒圈跳動Fr測量:6 S' ]* p5 `$ q1 P
在齒圈跳動測量儀上進行Fr測量時,要注意側頭應垂直於「節錐」方向,測量點位於齒寬中部;
Fr值超大,只會帶來沖擊類雜音,且伴隨明顯齒輪箱振動;
Fr的限度值,可以參考圓柱齒輪部分,7級以下精度的跳動值,無論大,小輪,都不會帶來沖擊類噪音;; p' I9 o/ d& }5 t8 w) R8 j
Fr值在很大程度上反映了「齒距精度」。所以在沒有條件的場合,可以用更仔細的齒圈跳動來間接反映「齒距」精度。所謂「更仔細的齒圈跳動」是指:在測量齒圈跳動的過程中,除了觀察總的跳動變化幅值以外,還要仔細觀察:是否有突變的「跳動」及其「突變的幅度」。
2. 嚙合區著色檢查:
4.1接觸區的形成過程:將被測齒輪的各個齒面,用濕潤的紅丹粉塗抹均勻,然後與「標准齒輪」在正確的安裝距下安裝,用大齒輪驅動小齒輪,分別按照順時針和逆時針旋轉後,則在嚙合的部位形成黑色的區域,其為嚙合區。
4.2良好的接觸區包含2個方面的要求:接觸區位置,接觸區大小。
4.3嚙合區的位置又包含2方面的要求:3 u& R6 c: `3 m5 o% {7 r/ a$ L2 Y8 A
沿齒寬方向的位置:斑點中心應位於齒寬中心略偏向小端的地方,即位於齒寬60%的位置(從大端量向小端);
沿齒高方向的位置:位於齒高中心略偏上的位置,位於齒高60%的位置(從齒根量向齒頂);
4.4嚙合區大小:4 l F8 z& V( _8 e) X
沿齒寬方向的嚙合區大小:約佔全齒寬的60%;6 {# T0 b; T# W& u [
沿齒高方向的嚙合區大小:約佔全齒高的40%-60%) o: |7 u' c7 g% h3 G- x, u
4.5輪齒的兩個齒面的嚙合區都應滿足以上要求,否則無法照顧「開機」與「停機」兩方面的噪音;
4.6對錐齒輪來講,連續運轉時,總是小齒輪的凹面去驅動大齒輪的凸面;
對電動工具而言,嚙合區的位置嚴重影響齒輪副的壽命和噪音,嚙合區的大小隻次要影響噪音和壽命。
4.7配對運轉的齒輪,在以下情況下,有以下結果。
嚙合區偏向齒頂,容易導致齒輪早期實效,負載壽命將降為額定壽命的30%-10%;
嚙合區偏向大端,將導致齒輪嚙合干涉,出現輪齒邊沿被啃碎的現象;這種情況下的噪音為打齒噪音,已經無法討論其壽命了,因為機器聲音恐怖,一刻也不能繼續運轉。
4.8嚙合區往齒根或者小端偏移,通常導致噪音。
4.9嚙合區除了往上下,左右偏離以外,有時還會沿齒面對角線發展,其常會導致噪音,並使壽命降低為額定壽命的70%-80%(已經不屬於早期失效的范疇)。
4.10嚙合區偏大,運轉噪音的音量會較小(不導致雜音),但其對安裝精度依賴性較高,否則不僅不會帶來較小噪音,還會導致輪齒嚙合時,在邊沿干涉,導致「打齒」噪音和齒輪早期失效;
4.11嚙合區偏小,常導致噪音音量偏大(不導致雜音),但其對安裝精度依賴性不高,在噪音和壽命方面的風險較小。
5.齒距:和圓柱齒輪一樣,齒距超標,也會導致雜音,也是噪音的主要來源;
其影響程度與原理與圓柱齒輪一致,不再重復。
1. EPG影響接觸區位置的直接原因:
E是指大、小齒輪的軸線空間交錯的距離;也即工程用語「正交」一詞中的「交」字。/ t1 i) S6 K2 J' V0 q2 k
P是PINION的首字母縮寫,自然代表「小齒輪位置」;
G是GEAR的首字母縮寫, 代表「大齒輪位置」
E,通常導致接觸區斜向發展,最終導致雜音;E控制在0.01以內是極好的,0.02以內可以接受,超大到0.05以上時,就不太能夠使用了;
P, 通常顯著影響嚙合區位置,多導致嚙合區沿齒高方向變化;P的變化極限通常為MINUS-PLUS0.1MM,
G,會不顯著地影響嚙合區,主要用來調配齒輪嚙合「側隙」;錐齒輪的側隙也應控制在0.15-0.20MM左右。- I# Q" C9 ^, x/ m' G4 r! h
錐齒輪還有一個安裝角度的問題,也即工程用語「軸交角」,「軸交角」的變化,會導致嚙合區往大端或者小端偏移,影響噪音,和壽命。其影響程度有待探索。
錐齒輪的安裝,遠比圓柱齒輪復雜和敏感,安裝不對,常導致早期失效。絕大多數的早期失效均源自於安裝不正確,而非熱處理問題,即便是不經過熱處理的齒輪,也不會發生30%額定壽

Ⅳ 齒輪精度檢測項目有哪些

齒輪精度檢測項目有很多,有4個大的方向,一是控制齒輪的傳遞運動的准確性精度,二是控制傳動平穩性精度,三是控制載荷分布均勻性,四是控制合理的齒側間隙。比較容易檢測,所用的量具比較簡單便宜的項目一般是檢齒圈徑向跳動、公法線長度變動、公法線長度平均偏差、齒厚誤差。

Ⅵ 齒輪誤差的測量方法主要有哪些

1)、齒輪單項幾何形狀誤差測量技術
它採用坐標式幾何解析測量法,將齒輪作為一個具有復雜形狀的幾何實體,在所建立的測量坐標系(直角坐標系、極坐標系或圓柱坐標系)上,按照設計幾何參數對齒輪齒面的幾何形狀偏差進行測量。測量方式主要有兩種:離散坐標點測量方式和連續幾何軌跡點掃描(如展成)測量方式。所測得的齒輪誤差是被測齒輪齒面上被測點的實際位置坐標(實際軌跡或形狀)和按設計參數所建立的理想齒輪齒面上相應點的理論位置坐標(理論軌跡或形狀)之間的差異,通常也就是和幾何坐標式齒輪測量儀器對應測量運動所形成的測量軌跡之間的差異。測量的誤差項目是齒輪的單項幾何偏差,以齒廓、齒向和齒距等三項基本偏差為主。由於坐標測量技術、感測器技術、計算機技術的發展,尤其是數據處理軟體功能的增強,三維齒面形貌偏差、分解齒輪單項幾何偏差和頻譜分析等誤差項目的測量得到了推廣。單項幾何偏差測量的優點是便於對齒輪(尤其是首件)加工質量進行分析和診斷、對機床加工工藝參數進行再調整;儀器可藉助於樣板進行校正,實現基準的傳遞。
2)、齒輪綜合誤差測量技術
它採用嚙合滾動式綜合測量法,把齒輪作為一個回轉運動的傳動元件,在理論安裝中心距下,和測量齒輪嚙合滾動,測量其綜合偏差。綜合測量又分為齒輪單面嚙合測量,用以檢測齒輪的切向綜合偏差和單齒切向綜合偏差;以及齒輪雙面嚙合測量,用以檢測齒輪的徑向綜合偏差和單齒徑向綜合偏差。為了更有效地發揮齒輪雙面嚙合測量技術的質量監控作用,增加了偏差的頻譜分析測量項目;還從徑向綜合偏差中分解出徑向綜合螺旋角偏差和徑向綜合齒向錐度偏差。這是齒輪徑向綜合測量技術中的一個新發展。綜合運動偏差測量的優點是測量速度快,適合批量產品的質量終檢,便於對齒輪加工工藝過程進行及時監控。儀器可藉助於標准元件(如標准齒輪)進行校驗,實現基準的傳遞。上述兩項測量技術基於傳統的齒輪精度理論,然而隨著對齒輪質量檢測要求的不斷增加和提高,這些傳統的齒輪測量技術也在不斷細化、豐富、更新、提高。
3)、齒輪整體誤差測量技術
它所基於的齒輪整體誤差理論,是由我國機床工具行業、尤其是成都工具研究所的科研技術人員共同努力創建和不斷完善的一種新型齒輪測量理論。把齒輪作為一個用於實現傳動功能的幾何實體,或採用坐標式幾何解析法對其單項幾何精度進行測量,並按齒輪嚙合傳動順序和位置,集成為一條「靜態」齒輪整體誤差曲線;或按單面嚙合綜合測量方式,使用特殊測量齒輪,採用滾動點掃描測量法對其進行測量,得到齒輪「運動」整體誤差曲線。上述兩種齒輪整體誤差曲線,經過運算和數據處理,都可以得到齒輪綜合運動偏差、各單項幾何偏差、三維齒面形貌偏差,以及接觸區狀態,從而能更全面、准確的評定齒輪質量和齒輪加工工藝的分析和診斷。齒輪整體誤差測量技術是對傳統齒輪測量技術的繼承和發展。尤其是採用單面嚙合、滾動點掃描測量的齒輪整體誤差測量技術更具有測量信息豐富、測量速度快、測量精度更接近使用狀態的特點,特別適合批量產品齒輪精度的檢測與質量的控制。在汽車齒輪要求100%全部檢測的態勢下,這種由我國首先開發出來的齒輪整體誤差測量技術得到了重視和推廣,其中,成都工具研究所開發的錐齒輪整體誤差測量技術曾於90年代轉讓給德國KLINGELNBERG公司。德國FRENCO公司推向市場的齒輪單面嚙合滾動點掃描測量儀器,採用了完全類同的技術。
當前齒輪製造業的一個發展趨勢,是將齒輪測量技術和齒輪設計、加工製造進行集成,實現齒輪製造信息的融合及CAD/CAM/CAT的集成,從而構建一個先進的齒輪閉環製造系統(由於通常由數字化信息來實現,可稱為數字化閉環製造系統)。美國GLEASON和德國KLINGELNBERG開發的錐齒輪閉環製造技術和系統是個典型實例。
此外,在儀器測量形態和檢測系統方面,現代齒輪測量技術還有如下的進展。
4)、齒輪在機測量技術
該技術有了較快的發展,是一個重要發展趨勢。直接將齒輪測量裝置集成於齒輪加工機床,齒輪試切或加工後不用拆卸,立即在機床上進行在機測量,根據測量結果對機床(或滾輪)參數及時調整修正(主要針對磨齒)。這對於成形磨齒加工和大齒輪磨齒加工而言,在提高生產效率、降低成本方面,尤其具有重要意義。德國KAPP廠的數控磨齒機就是一個典型代表。CNC齒輪加工機床的迅速發展,為推動齒輪在機測量技術的應用和發展提供了可靠的工作平台。
由於對大批量生產的汽車轎車齒輪質量要求的提高,齒輪在線測量分選技術的應用已是必不可少。上海汽車齒輪廠首次從美國ITW公司引進了該項技術和相應儀器裝備,取得了預期效果,據稱還將陸續購進該類檢測儀器。
5)、齒輪激光測量技術
通常是指在齒輪的幾何尺寸和形狀位置精度的測量中,採用了激光技術,包括採用激光測長系統(如採用雙頻激光干涉儀作為齒輪測量儀器的長度基準或感測器)、激光測量頭系統(如採用非接觸點反射式激光測量頭作為齒輪誤差的檢測感測器)、以及激光全息式齒輪測量系統(如採用激光全息技術對齒輪的齒面幾何形狀誤差進行測量的系統)等。由於激光是長度溯源基準,不少高精度齒輪計量系統或齒輪測量基準儀器,採用激光測量系統作為其長度坐標測量系統。美國FELLOWS廠70年代開發的MICROLOG60就是一個實例。加拿大溫莎精密測量儀器廠在80年代初生產的齒輪測量儀器就採用了非接觸點反射式激光測量頭,可用於測量塑料製成的軟齒面齒輪。齒輪激光測量技術在日本倍受重視,並逐步完善成為產品推向市場。日本AMTEC公司的G3齒輪測量系統,採用的是CONO激光測量頭,齒輪回轉,測頭位置相應變化,測出齒輪的截面形狀。大阪精機開發的激光齒輪測量儀,採用激光全息技術,用光干涉法對被測齒輪的全齒面形狀進行精度測量。

Ⅶ 齒輪精度如何檢測

齒輪檢測通常分兩種,一種是分析性檢測,一種是功能性檢測。
分析性檢測俗稱單項檢測,一般含括齒形齒向,公法線及變動量,徑向跳動,基節偏差,周節累積誤差等等。此種檢測方法需要專門的測量工具和檢測儀器,所以有的小型加工企業不能夠檢測(主要是齒形齒向檢測要齒輪檢測儀)
功能性檢測也叫綜合檢測,這個需要一個測量儀器,相對齒形齒向檢測儀要廉價的多,比較適合精度要求不是太高的大批量檢測。用已經知道精度的標准齒輪(一般精度在4級5級左右)來檢測被測齒輪,因為標准齒輪的精度相對被測齒輪來說精度較高,所以把檢測出來的偏差認為是被測零件的加工誤差。
通常檢測以下幾個指標:中心距及變動量,單齒徑向綜合誤差,一周徑向綜合誤差,此外還可以依據著色劑來判斷嚙合的狀態,接觸斑點的形狀和位置來判斷零件的精度狀況。

Ⅷ 求齒輪精度檢驗方法

齒輪的檢測和評定常規是兩種:一種是功能性檢測,國內也叫綜合檢測,另一種叫分析性檢測,或者叫單項檢測。如果評定齒輪的精度等級,多用分析性檢測,也就是單項檢測。需要專門的齒輪檢測設備,設備成本很高,克林根貝格的檢測儀具有全功能檢測,一般評定齒形、齒向、基節、周累和徑跳,根據實測數據可直接看出精度等級。一般都只是評價齒輪的精度,但是如果你想了解一對兒齒輪的嚙合精度的話,可以用綜合檢測。一般評價單齒徑向綜合誤差和一周徑向綜合誤差,也可評價徑跳和中心距變動量,基本反映的是齒輪副的嚙合精度。

怎麼檢查齒輪

通過軸承將齒輪連接到軸上,當齒輪內徑和軸外徑磨損時,徑向間隙變大,則齒輪很難正確接合並會導致異常雜訊。

1)目測檢查齒輪(1)檢查齒輪花鍵和軸接觸表面是否有擦傷或機械損壞。(2)檢查齒輪錐和同步器鎖環接觸表面是否有變色現象。

2)測量齒輪內徑使用卡規在若干位置測量齒輪內徑。

閱讀全文

與現在的齒輪檢測常用的方法相關的資料

熱點內容
痛風的西醫治療方法 瀏覽:698
斑餅的功效與作用及食用方法 瀏覽:238
廚房漏水怎麼辦最簡單的方法 瀏覽:201
十一個月寶寶濕疹快速消退方法 瀏覽:238
螺絲刀撬開保險櫃最簡單的方法 瀏覽:150
失眠有效簡單的方法 瀏覽:70
蜜俏的使用方法 瀏覽:690
修麗可發光瓶使用方法 瀏覽:654
接發方法及步驟 瀏覽:749
上海雜質硅膠解決方法 瀏覽:98
快速讓傷口癒合的方法 瀏覽:34
華為照片導入到iphone最簡單方法 瀏覽:554
醫院洗牙有什麼方法 瀏覽:622
怎麼糾正自卑的方法 瀏覽:276
如何快速剝濕蒜的方法 瀏覽:234
韓國紅參的食用方法 瀏覽:349
鉗形表溫度測量方法 瀏覽:531
創造的心是如何方法 瀏覽:884
美縫紙的使用方法圖片 瀏覽:873
阿咖酚散的的食用方法 瀏覽:470