㈠ 高考數學:求函數值域問題方法的總結
1.配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
2.逆求法(反解法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
3.換元法:通過變數代換轉化為能求值域的函數,化歸思想;
4.三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
5.基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
6.單調性法:函數為單調函數,可根據函數的單調性求值域.
㈡ 都該上高三了,對數學,尤其是函數還是一竅不通,怎麼辦啥!
一、課內重視聽講,課後及時復習。 新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。 二、適當多做題,養成良好的解題習慣。 要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。 三、調整心態,正確對待考試。 首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。 在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。 由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。 如何學好數學2 高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。 有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。 至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。 l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。 2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
㈢ 高中數學做題沒思路不會解題不知道從哪裡下手,本人目前高三剛復習到函數,很急,請大家幫幫我
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
㈣ 高考數學大題的解題技巧都有哪些
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤。一著不慎,滿盤皆輸。)。
二、數列題
1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。更多相關知識也可關注下北京新東方的高中數學課程。
㈤ 高中數學函數圖像題難題這個題怎麼做
這種題目有多難啊:考的就是帶數字,不要試圖把它的函數變形,在把圖畫出來,你自個先想想。
這種題目大概就這么個順序:第一步:判斷奇偶性(一步可以排除兩個選項)
第二步:就是帶數字(沒毛病,他考的就是由表達式對圖形進行初步判斷,甚至直接帶數字就行了)
當然你不是做研究的,不搞奧賽,高考就這么個解題技巧(說實話,我高三一看這種題口算就行了)
㈥ 高中數學有哪些難點
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
㈦ 高中函數一點不會,馬上就要高考了,有沒有什麼辦法可挽救我。
如果你只是想在短期時間內快速提高函數,其實並不難。因為你這是轉向突破,目標非常明確。
高考中出現的函數題,其實規律很好找,若出現在選擇填空,基本考的是基礎,提高基礎又很快。我考的時候,第一道大題是函數,這個基本就是考公式的熟練程度了,若出現在其他大題裡面,也只是考基本的運用。
說了這么多,無外乎告訴你,提高函數沒有你想像中那麼難,不要氣餒,主動放棄。
簡單說下放下,你根據自己情況參考:
羅列公式,如果你非常不熟有必要記背一下了。
看課本上相關函數章節的題,基礎差的話,還是有必要的,可以加強理解,記憶深刻。
整體之前做過相關試卷,集中看函數類習題,重新做,不要求快,弄懂為止。
每天做一兩題
我覺得這樣的話,應該不會出現大問題了,如果還有,可能是你自己為自己找的托詞,面對困難一味茫然無措是不行的,踏出第一步,後面的堅持。
希望能助夠幫到你^ ^,助你成功~
㈧ 高一數學函數題型及解題技巧有哪些
高一數學函數題型及解題技巧有:代入法、單調性法、待定系數法、換元法、構造方程法。
一、代入法
代入法主要有兩種方式,一種是出現在選擇題中,就是直接把題目的答案選項帶入到題目中進行驗證,這也是相對比較快的一種辦法,另外一種就是求已知函數關於某點或者某條直線的對稱函數,帶入函數的表達公式或者函數的性質,直接性的求解題目,通常適用於填空題,難度也也不會太大。
二、單調性法
單調性是在求解函數至於或者最值得時候很常見的一種高效解題的方法,函數的單調性是函數的一個特別重要的性質,也是每年高考考察的重點。但是不少同學由於對基礎概念認識不足,審題不清,在解答這類題時容易出現錯解。下面對做這類題時需注意的事項加以說明,以引起同學們的重視。
三、待定系數法
待定系數法解題的關鍵是依據已知變數間的函數關系,正確列出等式或方程。使用待定系數法,就是根據所給條件來確定這些未知系數,要判斷一個問題是否用待定系數法求解,主要是看所求解的數學問題是否具有某種確定的數學表達式,如果具有,就可以用待定系數法求解。
運用待定系數法解答函數問題的基本步驟是:1、首先要確定所求問題含有待定系數的解析式;2、根據題目中恆等的條件,列出一組含待定系數的方程;3,用函數的基本性質解方程組或者消去待定系數,從而使問題得到解決。
四、換元法
換元法主要用於解答復合函數題型問題,把一個小的函數表達式用一個變數來表現的形式稱為換元法,運用換元法解題可以降低題目的難度,便於觀察和理解。
五、構造方程法
不管哪種函數性壞死,函數的方程在運用中無疑是可以降低解題難度的,所以構造函數的方程也是經常會用到的一種解題技巧,特別是在高考解答題壓軸題中,構造函數這個步驟也是可以取得很高分數的,所大家必須要重視構造函數法這個技巧。
㈨ 還有八個月高考,數學函數部分完全不會要怎麼辦我是文科生
很隨意!只要你聽我的 1,把數學書函數部分看幾遍,一個字都不放過,然後做課後題。如果你仍然不會,就借初中數學書看,從能看懂的地方看,了解那幾類函數的基本性質,熟記公式與技巧,並抄下來! 2,把你們所有的考試卷子以及你自己有的其他數學資料上的函數部分題都做做,不會做的做個記號,看看是哪類函數問題,然後看答案,答案看不懂就再回到課本中! 3,函數類的題的規律性很強,無非是靠函數的基本性質以及多個類型的函數基本性質相結合,把做過的題總結一下,如果發現有某種方法做某類題很適合,就繼續找此類題,直至將此方法用熟練。 4,基礎題會做以後,開始鑽研難題,不要怕浪費時間,一道難題帶給你得啟發往往會勝過與幾十道簡單的題。 5,你如能做到,1周以內函數的基礎題能做都出來,2周你會對函數情有獨鍾,1個月你會成為一個函數高手! 最後提醒,函數的基本性質一定務必熟記!