⑴ 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
⑵ 求幾個相同加數的和,可以用乘法計算
是的,求幾個幾個相同加數的和,可以用乘法計算。
舉例說明如下:
11+11+11+11+11+11,這是6個11的和,可以用乘法計算,乘法的表達式為11×6=66。
乘法,是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。
(2)和數簡單的運算方法擴展閱讀:
整數的加減法:
(1)相同數位對齊;
(2)從個位算起;
(3)加法中滿幾十就向高一位進幾;減法中不夠減時,就從高一位退1當10和本數位相加後再減。
小數的加減法:
(1)小數點對齊(即相同數位對齊);
(2)按整數加、減法的法則進行計算;
(3)在得數里對齊橫線上的小數點,點上小數點。
整數的乘法:
(1)從個位乘起,依次用第二個因數每位上的數去乘第一個因數;
(2)用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;
(3)再把幾次乘得的數加起來。
小數的乘法:
(1)按整數乘法的法則先求出積;
(2)看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
⑶ 求幾個()加數的和用()計算比較簡便
解答:
求幾個(相同)加數的和用(乘法)計算比較簡便
這是在初學乘法時學的類似定義的知識點
比如說
以前在計算2+2+2時,是逐項相加
現在就是2*3=6
例如:
求幾個(數相加)的和,用乘法計算比較簡便。
比如:
3+3+3+3
=3×4
=12
(3)和數簡單的運算方法擴展閱讀:
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
⑷ 幾個相同的數相加,用什麼法計算更方便
求幾個相同加數的和,用(乘)法計算比較簡單。
乘法:求兩個數乘積的運算。
1、乘法的含義
乘法是求幾個相同加數連加的和的簡便演算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的寫法和讀法
⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數。
然後寫乘號,再寫相同加數的個數,最後寫等號與連加的和;也可以先寫相同加數的個數,然後寫乘號,再寫相同加數,最後寫等號與連加的和。
如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12
⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:「6乘3等於18」。
(4)和數簡單的運算方法擴展閱讀
「幾和幾相加」與「幾個幾相加」區別
求幾和幾相加,用幾加幾;如:求4和3相加是多少,用加法(4+3=7)。求幾個幾相加,用幾乘幾。如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
補充:幾和幾相乘,求積,用幾×幾。如:2和4相乘用2×4=8
2個乘數都是幾,求積,用幾×幾。如:2個8相乘用8×8=64
一個乘法算式可以表示兩個意義,如「4×2」既可以表示「4個2相加」,也可以表示「2個4相加」。「5+5+5」寫成乘法算式是(3×5=15)或(5×3=15),
都可以用口訣(三五十五)來計算,表示(3)個(5)相加,3×5=15讀作:3乘5等於15. 5×3=15讀作:5乘3等於15。
⑸ 請歸納小學數學簡便計算的幾種方法
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑹ 數學簡便計算方法技巧四年級簡單易懂
1.提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
6.利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交換律,a+b=b+a
結合律,(a+b)+c=a+(b+c)
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(與加法類似):
交換律,a*b=b*a
結合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
8.裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
公式:
⑺ 簡便運算的技巧和方法有哪些
數學簡便計算方法:
一、裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。
(3)分母上幾個因數間的差是一個定值。
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。
例題
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑻ excel如何簡便求和,要算的數字在一個單元格里的
假定「長度計算式」在A列,「長度計算值」在B列,先選定B列,再點 插入——名稱——定義,在名稱處寫入 JSZ ,在引用位置寫入=evaluate(a1) 確定。然後在B1寫入=jsz 下拉填充。
⑼ 數學口算簡單的方法
一
用「湊十法」口算
根據式題的特徵,應用定律和性質使運算數據「湊整」:
1、加數「湊整」。
如14+5+6=?啟發學生:幾個數相加,如果有幾個數相加能湊成整十的數,可以調換加數的位置,把幾個數相加。
2、運用減法性質「湊整」。
如50-13-7,啟發學生說出思考過程,說出幾種口算方法並通過比較,讓學生總結出:從一個數里連續減去幾個數,如果減數的和能湊成整十的數,可以把減數先加後再減。這種口算比較簡便。
3.連乘中因數「湊整」。
如25×14×4,25與4的積是100,可直介面算出結果是140。
二
運用「分解法」口算
就是把題目中的某數「拆開」分別與另一個數運算,如25×32,原式變成25×4×8=10×8=80。
三
運用一些速算技巧進行口算
1.首同尾合10的兩個兩位數相乘的乘法速算。
即用其中一個十位上的數加1再乘以另一個數的十位數,所得積作兩個數相乘積的百位、千位,再用兩個數個位上數的積作兩個數相乘的積的個位、十位。如:14×16=224(4×6=24作個位、十位、(1+1)×1=2作百位)。
2.頭差1尾合10的兩個兩位數相乘的乘法速算。即用較大的因數的十位數的平方,減去它的個位數的平方。如:48×52=2500-4=2496。
3.採用「基準數」速算。
如623+595+602+600+588可選擇600為基數,先把每個數與基準數的差累計起來,再加上基數與項數的積。
4.掌握一些運算規律。
例如,兩個分母互質數且分子都為1的分數相減,可以把分母相乘的積作分母,把分母的差作分子;兩個分母互質數且分子相同,可以把分母相乘的積作為分母,分母相減的差再乘以分子作分子,等等。
⑽ 求一些數學中的巧妙運算方法。
一、一個數兩位數乘11的巧算方法:首、尾不變,左右相加放中間(滿十要向前一位進1)
例如:24×11=264 45×11=495 56×11=616
二、一個數兩位數乘99的巧算方法:去1添補。這里的「去1」是指從原數中減去1,求出差作為得數的前部:「添補」就是在差的後面寫上原數的補數(100減去這個書的差)。
例如:58×99=5742 57=58-1 42=100-58
三、頭同尾和十(兩個數十位相同,個位相加得10)的巧算方法:十位加1乘自己,個位相乘放後面(乘積是一位數時要在前面補0)。
例如:48×42=2016 20=(4+1)×4 16=8×2
81×89=7209 72=(8+1)×8 09=1×9
四、一個數乘以15,等於這個數加上它一半的和的10倍。
例如:84×15=(84+42)×10=1260