㈠ 如何判斷單鍵雙鍵三鍵
第一、首先有VESPR理論,高中化學書上介紹的,就是用VSEPR算出中心原子的價層電子對數,最簡便的演算法是加法,即中心原子價層電子對數n=(中心原子價電子數+配位原子提供價電子數-基團所帶電荷代數值)/2.其中配位原子是H和X則提供1個價電子,O族元素不提供,N族元素提供-1個電子.
n=2,sp雜化,直線型
n=3,sp3雜化,平面三角形
以此類推
注意這是價層電子對的構型不是分子構型,分子構型則考慮配位原子的數量,
例如SO2是sp3雜化,但只有2O因此是折線形
I3-是sp3d雜化,但只有2I因此是直線形
第二、分子軌道理論,分子軌道理論(MO理論)是處理雙原子分子[1]及多原子分子結構的一種有效的近似方法,是化學鍵理論的重要內容.它與價鍵理論不同,後者著重於用原子軌道的重組雜化成鍵來理解化學,而前者則注重於分子軌道的認知,即認為分子中的電子圍繞整個分子運動.
分子軌道理論的要點:
1.原子在形成分子時,所有電子都有貢獻,分子中的電子不再從屬於某個原子,而是在整個分子空間范圍內運動.在分子中電子的空間運動狀態可用相應的分子軌道波函數ψ(稱為分子軌道)來描述.分子軌道和原子軌道的主要區別在於:(1)在原子中,電子的運動只受 1個原子核的作用,原子軌道是單核系統;而在分子中,電子則在所有原子核勢場作用下運動,分子軌道是多核系統.(2)原子軌道的名稱用s、p、d…符號表示,而分子軌道的名稱則相應地用σ、π、δ…符號表示.
2.分子軌道可以由分子中原子軌道波函數的線性組合(linear combination of atomic orbitals,LCAO)而得到.幾個原子軌道可組合成幾個分子軌道,其中有一半分子軌道分別由正負符號相同的兩個原子軌道疊加而成,兩核間電子的概率密度增大,其能量較原來的原子軌道能量低,有利於成鍵,稱為成鍵分子軌道(bonding molecular orbital),如σ、π軌道(軸對稱軌道);另一半分子軌道分別由正負符號不同的兩個原子軌道疊加而成,兩核間電子的概率密度很小,其能量較原來的原子軌道能量高,不利於成鍵,稱為反鍵分子軌道(antibonding molecular orbital),如 σ*、π* 軌道(鏡面對稱軌道,反鍵軌道的符號上常加「*」以與成鍵軌道區別). 若組合得到的分子軌道的能量跟組合前的原子軌道能量沒有明顯差別,所得的分子軌道叫做非鍵分子軌道.
3.原子軌道線性組合的原則(分子軌道是由原子軌道線性組合而得的):
(1)對稱性匹配原則
只有對稱性匹配的原子軌道才能組合成分子軌道,這稱為對稱性匹配原則.
原子軌道有s、p、d等各種類型,從它們的角度分布函數的幾何圖形可以看出,它們對於某些點、線、面等有著不同的空間對稱性.對稱性是否匹配,可根據兩個原子軌道的角度分布圖中波瓣的正、負號對於鍵軸(設為x軸)或對於含鍵軸的某一平面的對稱性決定.
符合對稱性匹配原則的幾種簡單的原子軌道組合是,(對 x軸) s-s、s-px 、px-px 組成σ分子軌道;(對 xy平面)py-py 、pz-pz 組成π分子軌道.對稱性匹配的兩原子軌道組合成分子軌道時,因波瓣符號的異同,有兩種組合方式:波瓣符號相同(即++重疊或--重疊)的兩原子軌道組合成成鍵分子軌道;波瓣符號相反(即+-重疊)的兩原子軌道組合成反鍵分子軌道.
(2)能量近似原則
在對稱性匹配的原子軌道中,只有能量相近的原子軌道才能組合成有效的分子軌道,而且能量愈相近愈好,這稱為能量近似原則.
(3)軌道最大重疊原則
對稱性匹配的兩個原子軌道進行線性組合時,其重疊程度愈大,則組合成的分子軌道的能量愈低,所形成的化學鍵愈牢固,這稱為軌道最大重疊原則.在上述三條原則中,對稱性匹配原則是首要的,它決定原子軌道有無組合成分子軌道的可能性.能量近似原則和軌道最大重疊原則是在符合對稱性匹配原則的前提下,決定分子軌道組合效率的問題.
4.電子在分子軌道中的排布也遵守原子軌道電子排布的同樣原則,即Pauli不相容原理、能量最低原理和Hund規則.具體排布時,應先知道分子軌道的能級順序.目前這個順序主要藉助於分子光譜實驗來確定.
5.在分子軌道理論中,用鍵級(bond order)表示鍵的牢固程度.鍵級的定義是:
鍵級 = (成鍵軌道上的電子數 - 反鍵軌道上的電子數)/2
鍵級也可以是分數.一般說來,鍵級愈高,鍵愈穩定;鍵級為零,則表明原子不可能結合成分子,鍵級越小(反鍵數越多),鍵長越大.
6.鍵能:在絕對零度下,將處於基態的雙分子AB拆開也處於基態的A原子和B原子時,所需要的能量叫AB分子的鍵離解能,常用符號D(A-B)來表示.
7.鍵角:鍵和鍵的夾角.如果已知分子的鍵長和鍵角,則分子的幾何構型就確定了.
第三、等電子體解法,指價電子數和原子數(氫等輕原子不計在內)相同的分子、離子或基團.有些等電子體化學鍵和構型類似.可用以推測某些物質的構型和預示新化合物的合成和結構.例如,N2、CO和NO+互為等電子體.它們都有一個σ鍵和兩個π鍵,且都有空的反鍵π*軌道.根據金屬羰基配位化合物的大量存在,預示雙氮配位化合物也應存在,後來果真實現,且雙氮、羰基、亞硝醯配位化合物的化學鍵和結構有許多類似之處.又如BH-和CH基團互為等電子體,繼硼烷之後合成了大量的碳硼烷,且CH取代BH-後結構不變.
第四、價鍵理論.價鍵理論將離子晶體或化學體系中基本的實體稱作原子(正或負離子),原子具有小整數的酸價(正值)或鹼價(負值),並以若干化學鍵與近鄰原子相連(鍵數又稱配位數).鍵價理論認為:原子的價將按一定比例分配允它所參與的諸鍵上,使每個鍵均具有一定的鍵價S,並符合價和規則,即鍵價之和等於原子價.根據鍵價-鍵長關聯可由實測鍵長算出鍵價.
我能想到的暫時就這些了,以後想到在補充吧~
㈡ 怎麼根據結構式判斷有幾個碳碳雙鍵
可以藉助不飽和度來判斷(前提是結構中不含其它的不飽和的結構,如三鍵,環、碳氧雙鍵等),一般只適用於與純烯烴的判斷。
如C4H6
如果是飽和的,根據CnH2n+2,可得碳原子數為4時,氫原子數應該為10
而一個碳碳雙鍵會減少2個H原子
故雙鍵數=不飽和度=(10-6)/2=2
應該有2個碳碳雙鍵
希望對你有所幫助,滿意請採納,親!如有疑問,歡迎追問!
㈢ 怎麼判斷烯烴中的雙鍵個數
烷烴的通式為CnH2n+2 則有一個雙鍵的烯烴為CnH2n 同理依次減兩個 若為CxHy 則N=(2x+2-y)\2。N為雙鍵個數
㈣ 化學中一個有機物,如何判斷它的鍵數
看其不飽和度,1個雙鍵為1個不飽和度,1個三鍵為兩個不飽和度,不飽和度計算方式,不飽和度=(2m+2-n)/2
㈤ 怎麼判斷酯中雙鍵的個數
這個是甘油三脂,所以呢,如果都是飽和脂肪酸的話,就是三個酯鍵三個雙鍵了
第一個酸的話,烷基部分是C17H35,35=2*17+2-1,所以是飽和的
第二個是不飽和的,所以加一個雙鍵
第三個,如果飽和,H=15*2+2-1=31,而這里是29,所以也有一個雙鍵
所以是兩個雙鍵,三個酯鍵
㈥ 怎麼看雙鍵碳原子上的烴基數目
烴基是烴去掉一個氫原子的物種,因此看雙鍵碳上有幾個碳相連,如果這些碳上只有碳和氫那就算一個烴基
㈦ 有機物雙鍵個數計算方法
有關系但不是必然關系。
如果有機物中存在碳碳雙鍵,則容易被氧化,發生氧化還原反應;
但如果有機物中無碳碳雙鍵,也可能發生氧化還原反應。因為其他官能團也能被氧化,如羥基,醛基,碳碳叄鍵等。
㈧ 怎樣判斷雙鍵有幾種位置
第1個問題:先定碳架(有2種),再看各碳架的對稱性,來確定雙鍵擺放的位置.
第2個問題:命名相同,則位置重復.
㈨ 有機物中判斷含碳碳雙鍵個數的公式
C+1-H/2=不飽和度,一個碳碳雙鍵就一個不飽和度(其實直接數數就可以了)
㈩ 怎麼判斷形成單鍵還是雙鍵
判斷化合鍵是單鍵雙鍵或者三鍵的依據是看兩種元素的共用電子對數目.
將兩種元素最外層電子共用情況了解了就知道了,公用一對電子則是單鍵,兩對是雙鍵.同理