A. 平穩性檢驗方法的有效性研究
——針對客觀類平穩性檢驗方法進行分析,從時間序列的樣本長度視角探討檢驗方法的實際性能, ADF 檢驗和PP 檢驗 是相對較好的判定方法,在模擬實驗中呈現較好的性能
時間序列 是一類典型的隨機數據,基於隨機變數的歷史和現狀來推測其未來需要假設隨機變數的歷史和現狀具有代表性或可延續性,樣本時間序列展現了隨機變數的歷史和現狀。如果隨機變數基本性態維持不變,則要求樣本數據( 時間序列) 的本質特徵仍能延續到未來; 統計量( 均值、方差、協方差)的取值在未來仍能保持不變,則 樣本時間序列具有平穩性 。
通常隨著時間t 取值變動,時間序列的期望值、方差和延遲k 階自協方差的絕對取值一般是變動的,時間序列平穩性特徵將判定為 非平穩
實踐中時間序列平穩性的檢驗,大都是從時間序列樣本數據取值的角度來分析一些統計量特徵,其本質是得到一個平穩性檢驗的「近似結果」。現有的時間序列數據平穩性檢驗方法較多,主要包括主觀檢驗方法( 如自相關函數圖) 和客觀檢驗方法( 如單位根檢驗) 兩類方法。
劉田的研究採用單位根,並針對AR 系列模型展開,本文從樣本長度的視角展開,對AR( Auto-Regression) 系列、MA( Moving Average) 系列、ARMA( Auto-Regressive and Moving Average) 系列和ARIMA( Autoregressive Integrated Moving Average) 系列四種模型展開分析,並採用ADF 檢驗( AugmentedDickey-Fuller test) 、PP 檢驗( Phillips-Perron test) 、KPSS 檢驗( Kwiatkowski-Phillips-Schmidt-Shin test) 、LMC 檢驗( Leybourne-McCabe stationarity test) 四種方法展開實證,分析這些平穩性檢驗方法的實際性能。
從平穩性定義和「近似檢驗」的分析可知,樣本長度將會對檢驗方法的效果造成明顯的影響。劉田[2]探討了單位根檢驗中的樣本長度問題,發現單位根檢驗在分析低維度樣本數據時,其實際效果偏差。因此,實證中所採集的數據樣本長度太短,則其得到的平穩性分析結果顯得不可靠,然而,在實際應用中,仍有大量學者在實證分析時所採集的時間序列樣本長度較短。,因此,其檢驗結果和後續分析值得懷疑。
平穩性分析是不同領域的時間序列數據建模的共性問題,時間序列平穩是經典回歸分析賴以實施的基本假設。如果數據非平穩,則作為大樣本下統計推斷基礎的「一致性」要求便被破壞,基於非平穩時間序列的預測也就失效。因此, 平穩性檢驗是時間序列分析的一個關鍵問題
如何有效地判定時間序列的平穩性,最禪灶槐基本的方法就是平穩性檢驗。現有方法主要包括主觀檢驗方法和客觀檢驗方法,具體如下:
主觀檢驗方法 的典型方式是藉助 圖形 判斷時間序列的賀友平穩性特徵。比如,時間路徑圖法可以繪制出時間序列的散點圖,然後觀察散點是否圍繞其均值上下波動,如果是,則判斷序列為平穩的,否則,判斷為非平穩的[5],該方法受判斷者的主觀意識影響比較大。其次,時間序列相關函數圖為平穩性判定提供了一個有效的途徑,這包括自相關函數圖、偏自相關函數圖和逆自相關函數圖。對給定的時間序列數據樣本,若其自相辯咐關函數序列迅速收斂到0,則判定為平穩的,反之,則判定為非平穩的。偏自相關函數圖和逆自相關函數圖的應用與自相關函數圖相似,這些方法對序列收斂狀態的判斷帶有一定的主觀性,因此都屬於主觀類檢驗方法。
缺點:1.對大批量的時間序列數據,工作量大2.主觀判定結果因人而異,難以得到一致的結果,因此,實際應用中,這些主觀方法常用於對平穩性特徵的粗略判定。
客觀檢驗方法 的典型代表是單位根檢驗。單位根檢驗( Dickey-Fuller test,DF 檢驗) 是平穩性檢驗中常用到的一種方法。ADF 檢驗是一種擴充的DF 檢驗,可以解決DF 檢驗中對隨機項誤差白雜訊假設的問題。DF 單位根檢驗和ADF 單位根檢驗是通過建立時間序列的自回歸方程,引入滯後運算元構建特徵方程,根據其特徵根的絕對值來判斷序列的平穩性,其准確性主要受到自回歸方程精確性的影響,實踐中只能從統計建模角度給出一個最優的模型。此外,PP 檢驗、KPSS 檢驗[17-18]、LMC 檢驗等檢驗方法也得到了廣泛的研究和應用,這些方法都沿用了統計分布的檢驗方式。國內外學者的相關研究極大地豐富了時間序列平穩性檢驗的理論和應用研究。
缺點:藉助統計分布臨界表的平穩性判定方式,本質上是給出統計意義上的近似結果。盡管客觀檢驗方法已經成為平穩性檢驗研究的主流方法,然而這些方法檢驗統計量的統計分布通常假設樣本長度趨於無窮大,而現實中所採集到的時間序列往往很難滿足這樣的要求。仍要對客觀檢驗方法的性能進行統計分析,實證表明其准確率仍不夠理想。
方法:ADF 檢驗、PP 檢驗、KPSS 檢驗、LMC檢驗
樣本:本文特生成6 組非平穩時間序列數據和6 組平穩時間序列數據進行實驗分析
et為服從標准正態分布的偽隨機函數。模擬實驗數據的時間長度分別取50、100、150、200、250、500 六種長度,每次模擬分別產生1000 個時間序列數據樣本。因此,對每一種長度,都產生12000個時間序列數據樣本,對六種長度,一共產生72000個時間序列數據樣本
採用Matlab 軟體進行分析
1) 對6 組非平穩時間序列數據樣本而言,兩種檢驗方法的效果表現很好,檢驗准確率都達到了90%以上,並且效果較為穩定,受時間長度與模型參數影響不大; ( 2) 對6 組平穩時間序列數據樣本而言,兩種檢驗方法的實際准確率有較大的波動,受具體模型的影響明顯( 3) 計算12 組模型的檢驗准確率的均值可知,ADF檢驗效果受時間序列樣本長度的影響顯著,樣本長度越大,則檢驗准確率越高。
從表4 中可以看出: ( 1) 對6 組非平穩時間序列數據樣本而言,KPSS 檢驗的結果比較理想,無論樣本長度取值大小,其檢驗准確率都超過了95%;( 2) 但對6 組平穩時間序列數據而言,KPSS 檢驗准確率有很大的波動; 對S1、S2 和S5 三組模擬數據的檢驗准確率極差,無論樣本長度取值大小,其檢驗准確率都低於10%; 對S3、S4 和S6 三組模擬數據的檢驗准確率不太理想,其檢驗准確率位於[58. 4%,76. 3%]的區間,且受樣本長度的影響較小; ( 3) 計算12 組模型的檢驗准確率的均值可知,KPSS 檢驗效果受時間序列樣本長度的影響不太明顯,隨著樣本長度的增大,其檢驗准確率沒有明顯的提高。
1) 對6 組非平穩時間序 列數據而言,LMC 檢驗准確率有很大的波動; 檢測 准確率受模型參數影響很大,NS1、NS2 和NS3 模型 的准確率相對較高,而NS4、NS5 和NS6 模型的准確 率相對較低,且隨時間長度的增加,6 個模型的檢驗 准確率有明顯的波動; ( 2) 對6 組平穩時間序列數 據而言,LMC 檢驗准確率也有很大的波動; 檢測准 確率受模型參數影響很大,NS1 和NS5 模型的准確 率相對較低,而NS2、NS3、NS4 和NS6 模型的准確 率相對較高; 且隨時間長度的增加,檢驗准確率有明 顯的波動;3) 計算12 組模型的檢驗准確率的均值 可知,LMC 檢驗效果受時間序列樣本長度的影響不 太明顯,隨著樣本長度的增大,其檢驗准確率沒有明 顯的提高
從表3-表5 可知,無論是平穩模擬數據還是非平穩模擬數據,四種方法都存在一定概率的檢驗錯誤。如果將單位根誤判為平穩過程定義為第一類錯誤,將平穩過程誤判為單位根過程定義為第二類錯誤。針對各種樣本長度,首先計算出四種檢驗方法的第一類錯誤的均值,繪制曲線圖,如圖1( a) 所示然後,計算出四種檢驗方法的第二類錯誤的均值,繪制曲線圖,如圖1( b) 所示; 其中,ADF 檢驗和PP 檢驗兩種方法的錯誤率曲線是重合的。
由圖1 可知: ( 1) LMC 檢驗方法的第一類錯誤率較高,這表明該檢驗方法有很大概率將非平穩時間序列判定為平穩時間序列,而ADF 檢驗、PP 檢驗和KPSS 檢驗三種方法的第一類錯誤率較低; (2)KPSS 檢驗和LMC 檢驗方法的第二類錯誤率較高,這表明該檢驗方法有很大概率將平穩時間序列判定為非平穩時間序列,而ADF 檢驗和PP 檢驗兩種方法的第一類錯誤率較低; ( 3) 在針對多個模擬模型的實證結果表明,ADF 檢驗和PP 檢驗的檢驗性能比較理想。
平穩性檢驗是時間序列分析中的一個重要研究內容。主觀類平穩性檢驗方法的實際檢驗結果會受
到個人因素影響而呈現不一致的情況,因此往往用於對平穩性的粗略判定。客觀類平穩性檢驗方法雖然可以給出統計意義上的唯一判定結果,然而這種基於統計分布的近似檢驗方式,其實際准確率值得深究。本文實證發現: 一方面,時間序列樣本長度會對客觀類檢驗方法造成影響,這一點與劉田的研究結論是一致的[2]; 另一方面,從兩類錯誤分析來看, ADF 檢驗和PP 檢驗 是相對較好的判定方法,在模擬實驗中呈現較好的性能。然而,對某些模擬數據( 模型S1、S2 和S5) 的檢驗效果仍很不精確,而且當樣本長度較小時,其檢驗准確率明顯較低。綜上分析,不可否認,時間序列平穩性檢驗研究仍然任重道遠,採用現有的檢驗方法進行實踐時,採集足夠長時間的數據( 增加樣本長度) 是提高檢驗結果可靠性的必要前提。實際採集到的樣本長度是有限的,漸進分布檢驗方式的改進空間有限,新的檢驗方式值得探究。
B. spss怎麼檢測時間序列的平穩性
第一張圖非平穩因為他有趨勢你能看到。
ACF是拖尾,PACF是截尾,因此屬於AR模型。為AR(1)。
至於差分幾次我也不是特別清楚你可以差分一次兩次試試看看他的序列圖哪個比較平穩或者如果判斷不出來的話matlab有p-value可以檢驗spss沒有。
spss操作你可以隨便翻教程上面都有。
C. 怎麼使用EViews進行平穩性檢驗
具體步驟如下:
1、創建Workfile:點擊File/New/Workfile,輸入起止日期