① 配方法的步驟例題
配方法解一元二次方程步驟
我們已經解過方程
(χ + 3)2 = 2 ,
因為方程中χ + 3 是2 的平方根,所以運用了直接開平方法來解。
如果我們把方程
(χ + 3)2 = 2
的左邊展開並整理,就得
χ2 + 6χ + 7 = 0 ,
因此,要解方程
χ2 + 6χ + 7 = 0 ,
我們可以先把它化成
(χ + 3)2 = 2
來解,化法如下:把方程
χ2 + 6χ + 7 = 0
的常數項移到右邊,得
χ2 + 6χ = -7 。
為了使左邊成為一個完全平方式,在方程的兩邊各加上一次項系數一半的平方。
χ2 + 6χ + 32 = - 7 + 32
(χ+3)2 =2
解這個方程,得
χ + 3 = ±√2,
所以
χ = -3±√2 ,
即χ1 = -3+ √2 、 χ2 = -3-√2 。
這種解一元二次方程的方法叫做配方法。這個方法就是先把常數項移到方程的右邊,再把左邊配成一個完全平方式,如果右邊是非負數,就可以進一步通過直接開平方法來求出它的根。
例題1:解方程χ2 - 4χ -3 = 0
移項,得
χ2 - 4χ = 3
配方,得
χ2 - 4χ +(-2)2 = 3 + (-2)2
(χ-2)2 =7
χ = ±√2
解這個方程,得
χ -2 = ±√7
χ =2 ±√7
即
χ1 =2 +√7 ,χ2 = 2 -√7
例題2:解方程2χ2 + 5χ -1 = 0
分析: 這個方程的二次項系數是2,為了便於配方,可以先把二次項系數化為1,為此方程的各項都除以2。把方程的各項都除以2,得