導航:首頁 > 解決方法 > 初一數學題解決方法

初一數學題解決方法

發布時間:2024-09-04 00:24:38

1. 初中數學解題方法歸納總結

想要在初中學好數學,學會解題是關鍵。那麼初中數學解題方法有哪些呢?為了幫助同學們更好的學習數學,我給大家整理了初中數學解題方法。
初中數學解題方法歸納
1. 觀察與實驗

( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。

( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。

2. 比較與分類

( 1 )比較法

是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。

( 2 )分類的方法

分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。

3 .特殊與一般

( 1 )特殊化的方法

特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。

( 2 )一般化的方法

4. 聯想與猜想

( 1 )類比聯想

類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。

通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:

( 2 )歸納猜想

牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。

歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。

5. 換元與配方

( 1 )換元法

解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。

( 2 )配方法

配方法是對數學式子進行一種定向變形(配成“完全平方”)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用“裂項”與“添項”、“配”與“湊”的技巧,從而完成配方。有時也將其稱為“湊配法”。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式

6. 構造法與待定系數法

( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。

( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。

7. 公式法與反證法

( 1 )公式法

利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:

( 2 )反證法是“間接證明法”一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。
初中學數學解題技巧
1. 數學探索題

所謂探索題就是從問題給定的題設條件中探究其相應的結論並加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。

條件探索題:解答策略之一是將題設和結論視為已知,同時推理,在演繹的過程中尋找出相應所需的條件。

結論探索題:通常指結論不確定不唯一,或結論需通過類比、引申、推廣,或給出特例需通過歸納得出一般結論。可以先猜測再去證明;也可以尋求具體情況下的結論再證明;或直接演繹推證。

規律探索題:實際就是探索多種解決問題的途徑,制定多種解題的策略。

活動型探索題:讓學生參與一定的社會實踐,在課內和課外的活動中,通過探究完成問題解決。

推廣型探索題:將一個簡單的問題,加以推廣,可產生新的結論,在初中教學中常見。如平行四邊形的判定,就可以產生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。

探索是數學的生命線,解探索題是一種富有創造性的思維活動,一種數學形式的探索絕不是單一的思維方式的結果,而是多種思維方式的聯系和滲透,這樣可使學生在學習數學的過程中敢於質疑、提問、反思、推廣。通過探索去經歷數學發現、數學探究、數學創造的過程,體會創造帶來的快樂。

2. 數學情境題

情境題是以一段生活實際、故事、歷史、游戲與數學問題、數學思想和方法於情境中。這類問題往往生動有趣,激發學生強烈的研究動機,但同時數學情景題又有信息量大,開放性強的特點,因此需要學生能從場景中提煉出數學問題,同時經歷了藉助數學知識研究實際問題的數學化過程。

如老師在講有理數的混合運算時,

3. 數學開放題

數學開放題是相對於傳統的封閉題而言的一種新題型,其特徵是題目的條件不充分,或沒有確定的結論,也正因為這樣,所以開放題的解題策略往往也是多種多樣的。

( 1 )數學開放題一般具有下列特徵

①不確定性:所提的問題常常是不確定的和一般性的,其背景情況也是用一般詞語來描述的,因此需收集其他必要的信息,才能著手解的題目。

②探究性:沒有現成的解題模式,有些答案可能易於直覺地被發現,但是求解過程中往往需要從多個角度進行思考和探索。

③非完備性:有些問題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在於尋求解答的過程中學生的認知結構的重建。

④發散性:在求解過程中往往可以引出新的問題,或將問題加以推廣,找出更一般、更概括性的結論。常常通過實際問題提出,學生必須用數學語言將其數學化,也就是建立數學模型。

⑤發展性:能激起多數學生的好奇性,全體學生都可以參與解答過程。

⑥創新性:教師難以用注入式進行教學,學生能自然地主動參與,教師在解題過程中的地位是示範者、啟發者、鼓勵者、合作者。

( 2 )對數學開放題的分類

從構成數學題系統的四要素(條件、依據、方法、結論)出發,定性地可分成四類;如果尋求的答案是數學題的條件,則稱為條件開放題;如果尋求的答案是依據或方法,則稱為策略開放題;如果尋求的答案是結論,則稱為結論開放題;如果數學題的條件、解題策略或結論都要求解題者在給定的情境中自行設定與尋找,則稱為綜合開放題。

從學生的學習生活和熟悉的事物中收集材料,設計成各種形式的數學開放性問題,意在開放學生的思路,開放學生潛在的學習能力,開放性數學問題給不同層次的學生學好數學創設了機會,多種解題策略的應用,有力地發展了學生的創新思維,培養了學生的創新技能,提高了學生的創新能力。

( 3 )以數學開放題為載體的教學特徵

①師生關系開放:教師與學生成為問題解決的共同合作者和研究者

②教學內容開放:開放題往往條件不完全、或結論不完全,需要收集信息加以分析和研究,給數學留下了創新的空間。

③教學過程的開放性:由於研究的內容的開放性可以激起學生的好奇心、同時由於問題的開放性,就沒有現成的解題模式,因此就會留下想像的空間,使所有的學生都可參與想像和解答。

( 4 )開放題的教育價值

有利於培養學生良好的思維品質;

有助於學生主體意識的形成;

有利於全體學生的參與,實現教學的民主性和合作性;

有利於學生體驗成功、樹立信心,增強學習的興趣;

有助於提高學生解決問題的能力。

4. 數學建模題(初中數學建模題也可以看作是數學應用題)

數學新課程標准指出 : 要學生會應用所學知識解決實際問題 , 能適應社會日常生活和生產勞動的基本需要。初中數學的學習目的之一 , 就是培養學生解決實際問題的能力 , 要求學生會分析和解決生產、生活中的數學問題 , 形成善於應用數學的意識和能力。從各省市的中考數學命題來看 , 也更關注學生靈活運用數學知識解決實際問題能力的考查 , 可以說培養學生解答應用題的能力是使學生能夠運用所學數學知識解決實際問題的基本途徑之一
初中數學應用問題類型
( 1 )探求結論型數學應用問題

根據命題中所給出的條件,要求找出一個或一個以上的正確結論

( 2 )跨學科的數學應用問題

①數學與物理

②數學與生化

以上兩題是與生物和化學有關的問題,體現了數學在生化學科的應用。

總之,數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。中考數學應用問題熱點題型主要包括生活、統計、測量、設計、決策、銷售、開放探索、跨學科等等,中考在強化學生應用意識和應用能力方面發揮及其良好的導向功能。這就要求我們在平時教學中善於挖掘課本例題、習題的潛在的應用功能。巧妙地將課本中具有典型意義的數學問題回歸生活、生產的原型,創設一個實際背景,改造成有深刻數學內涵的實際問題,以增強應用意識,發展數學建模能力。

四、掌握初中數學解題策略提來提高數學學習效率

(1)認真分析問題,找解題准切入點

由於數學問題紛繁復雜,學生容易受定勢思維的影響,這樣就會響解題思路造成很大的影響。為此,這時教師要給予學生正確指導,幫助學生進行思路的調整,對題目進行重新認真的分析,將切入點找准後,問題就能游刃而解了。例如:已知:AB=DC,AC=DB。求證:∠A=∠D。

此題是一道比較經典的證明全等的題型,主要是對學生對已知條件整合能力和觀察識圖能力的鍛煉。然而,從圖形的直觀角度來證明∠AOC=∠DOB,這樣的思路只會落入題目所設下的陷阱。為此,在對此題的審題時,教師要引導學生注意將題目已知的兩個條件充分結合起來考慮,提醒學生可以適當添加一定的輔助線。

(2)發揮想像力,藉助面積出奇制勝

面積問題是數學中常出現的問題,在面積定義及相關規律中,蘊含著深刻的數學思想,如果學生能充分了解其中的韻味,能夠熟練的掌握其中的數學論證思維,就有可能在其他數學問題中藉助面積,出奇制勝順利實現解題。由於幾何圖形的面積與線段、角、弧等有密切的聯系,所以用面積法不但可證各種幾何圖形面積的等量關系,還可證某些線段相等、線段不等、角的相等以及比例式等多種類型的幾何題。例1、 若E、F分別是矩形ABCD邊AB、CD的中點,且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長之比為( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1

由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設矩形EFDA與矩形ABCD的相似比為k。因為E、F分別是矩形ABCD的中點,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的寬與長之比為1∶2;故選(C)。

此題利用了“相似多邊形面積的比等於相似比平方”這一性質,巧妙解決相似矩形中的長與寬比的問題。事實上,藉助面積,形成解題思路的過程,就是學生思維轉換的過程。

(3)巧取特殊值,以簡代繁

初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其繁甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。

例2、分解因式:x2+2xy-8y2+2x+14y-3。

思路分析:本題是二元多項式,從常規思路進行解題也未嘗不可,但是從鍛煉學生思維能力的角度出發,教師可以在立足常規解法的基礎上,引導學生進行其他方面解題思路的探索。如從巧取特值的角度出發,把其中的一個未知數設為0,則可以暫時隱去這個未知數,而就另一個未知數的式子來分解因式,達到化二元為一元的目的。

解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。當把兩次分解的一次項的系數1、1;-2、4。可知,1×4+(-2)×1正好等於原式中xy項的系數。因此,綜合起來有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

其實,用特殊值法,也叫取零法。這種方法在因式分解中可以發揮很大的作用,幫助學生找到其他的解題思路。一般來說其步驟是:A、把多項式中的一個字母設為0所得的結果分解因式,B、把多項中的另一個字母設為0所得的結果分解因式,C、把上兩步分解的結果綜合起來,得出原多項式的分解結果。但要注意:兩次分解的一次因式的常數項必須相等,如本題中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否則,在綜合這兩步的結果時就無所適從了。

(4)巧妙轉換,過渡求解法

在解數學題時,即要對已知的條件進行全面分析,還要善於將題目中的隱性條件挖掘出來,將數學中各知識之間的聯系巧妙的運用起來,用全面、全新的視角來解決問題。

例如:已知:AB為半圓的直徑,其長度為30 cm,點C、D是該半圓的三等分點,求弦AC、AD與弧CD所圍成的圖形的面積。

本題需要解出的是一個不規則圖形的面積,可能大多數同學的思維就是將CD連結起來,將其轉變為一個角形和弓形,兩者面積之和就為該題需要解決的問題。這時,教師就要引導學生學會對半徑這一已知條件加以利用,幫助其將另外兩條OC、OD輔助線連結起來,將題目要求解的不規則圖形的面積,轉化成求扇形OCD的面積,這樣該題的解題思維就能一目瞭然了。

綜上所述,初中數學解題存在很強的靈活性。有的數學題不只一種解法,而有多種解法,有的數學題用常規方法解決不了,要用特殊方法。因此,解數學題要注意它的靈活性和技巧性。解題技巧在升學考試中至關重要,不能忽視。初中數學教師要注意對解題技巧的鑽研,並鼓勵學生發散思維,尋找解題技巧,提高解題效率,增強學習數學的能力。

猜你喜歡:

1. 初中數學規律題公式

2. 初中數學學習方法與技巧

3. 關於初中數學的學習方法有哪些

4. 初一數學解題技巧

5. 初中數學學習方法的六大要點

2. 初一數學解題方法與技巧分享

數學大題都是有一些技巧的,下面我就大家整理一下初一數學解題方法與技巧分享,僅供參考。

數學選擇題和填空題解題技巧

排除選項法

選擇題因其答案是四選一,必然只有一個正確答案,那麼我們就可以採用排除法,從四個選項中排除掉易於判斷是錯誤的答案,那麼留下的一個自然就是正確的答案。

賦予特殊值法

即根據題目中的條件,選取某個符合條件的特殊值或作出特殊圖形進行計算、推理的方法。用特殊值法解題要注意所選取的值要符合條件,且易於計算。

直接求解法

有些選擇題本身就是由一些填空題、判斷題、 解答題 改編而來的,因此往往可採用直接法,直接由從題目的條件出發,通過正確的運算或推理,直接求得結論,再與選擇項對照來確定選擇項。我們在做解答題時大部分都是採用這種方法。

初一數學應用題學法指導

1.圖解分析法這實際是一種模擬法,具有很強的直觀性和針對性,數學教學中運用得非常普遍。如工程問題、速度問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之。(例略)

2.親身體驗法如講逆水行船與順水行船問題。有很多學生都沒有坐過船,對順水行船、逆水行船、水流的速度,學生難以弄清。為了讓學生明白,我舉騎自行車為例(因為大多數學生會騎自行車),學生有親身體驗,順風騎車覺得很輕松,逆風騎車覺得很困難,這是風速的影響。並同時講清,行船與騎車是一回事,所產生影響的不同因素一個是水流速,一個是風速。這樣講,學生就好理解。

總結歸納,對易錯題型重點訓練,強化 知識點

這項工作,不僅僅是老師的事,更要求學生能夠獨立進行。

當學生會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,他才真正掌握了這門學科的竅門,才能真正做到「任它千變萬化,我自巋然不動」。

以上就是我為大家整理的初一數學解題方法與技巧分享。

3. 初一數學應用題解題方法和技巧

初一數學應用題解題方法和技巧如下:

1.圖解分析法:

這實際是一種模擬法,具有很強的直觀性和針對性,數學教學中運用得非常普遍。如工程問題、速度問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之。

3.直觀分析法:

如濃度問題,首先要講清百分濃度的含義,同時講清百分濃度的計算方法

其次重要的是上課前要准備幾個杯子,稱好一定重量的水,和好幾小包鹽進教室,以便講例題用。

4. 初一數學常用的解題方法匯總

學會初一數學的解題方法,能讓你在學習數學的路上事半功倍。下面是我分享的初一數學常用的解題方法,一起來看看吧。

初一數學常用的解題方法

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等種數學知識互相滲透,有利於問題的解決。

初中數學的學習方法

首先、課前預習

課前預習很多同學和家長會忽視而寧願花大量時間去輔導班。其實按時做好課前預習,聽課的時候就能有重點。重點聽自己不理解的地方,做好課堂筆記。課後及時溫習。學習就是一個循序漸進的過程,不會一口吃個胖子;與其貪多嚼不爛,不如按照正常的學習規律來,既不耽誤學習又不耽誤玩。

第二、打好數學基礎。

數學學習中,數學概念、基本定理定義和公式是基礎。同學們一定要先理解,需要求證的學會求證,能推導的自己會推導;這樣才能理解記憶;真正學會。如果連基本概念和定理定義、公式都不理解,記不住;怎麼會做題呢?所以,打好基礎是關鍵。

第三、熟悉例題,吃透課本。

數學考試和中考都是以課本為基礎命題的。因此,書上的例題一定要弄懂吃透。把課本上所有的知識點都過一遍;重點記憶。

第四、課後練習及時做

對於課後練習一定要在學完一課後及時做。鞏固所學知識;不懂的及時問老師或者同學。

第五、做同步訓練題。

數學公式和定理的運用,還要考平時做一定的同步訓練題。但是不能貪多,做過的一定要弄會,搞懂。總結別人的方法,找出差距,彌補不足。

第六、多總結對比記憶。

數學中也有很多相似或相近的定理定義,公式。要善於總結他們的區別與聯系。才能記得牢記得快。做題也是,多總結好的解題方法,技巧;才會百尺竿頭更進一步。

學習方法因人而異,同學們要多總結,結合自身找到適合自己的方法。初中數學並不難,相信大家都能學好。

提高初中數學成績的建議

一、要有端正的寫作業的態度。

從思想上要認真對待,如果養成懶散的習慣了,以後問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。因為一個好習慣的養成是要下決心去堅持的,雖然由於以前的習慣不好或者遺留問題太多導致在堅持的過程中會容易產生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習慣養成之後,原來所經常遇到的問題就會越來越少,成績也自然提高了起來。

二、注意力一定要集中。

不要在寫作業的時候干其他的事或想其他事,一心不能二用。盡快地反作業做完了才能夠去做別的事情。

三、要學會總結。

如果在看到題目後能很快反映出這題目所需要的知識點,那麼做題速度就會提高,在做題之後也要總結一下思路。多總結一下會發現很多題目都有規律可循,這樣可以起到事半功倍的效果,以後再碰到類似問題時,就可以很輕鬆了。

四、營造一個良好的寫作業環境。

孩子寫作業時盡量保持安靜,書桌上除了放書、學慣用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓斥,要多鼓勵孩子。

3加強計算能力

計算一直是數學的一個核心內容,幾乎每一個數學問題都需要通過計算。那麼,計算的准確率就顯得尤為重要了。想要提高數學成績,計算的准確率是一定要提高的。那麼如何提高計算的准確率呢?這里我也同樣給出了幾條建議。

一、強化學生的有意注意和良好的計算習慣

(1)仔細審題的習慣。拿到題目後認真審題,看清題目的要求,想明白過程中應該注意哪些問題。

(2)細心檢查的習慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。

(3)認真書寫的習慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免

錯誤的發生。

二、強化口算能力

任何計算都是以口算為基礎的,口算能力的高低,直接影響到學生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓練,所以應當經常性的進行一些口算的練習。

三、速算巧算

平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數計算的部分,有時候數字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。

四、強化估算能力

很多的問題,特別是應用題,當看到問題後就能夠大概地去估計一下結果大概會是一個什麼范圍的數,有了這種估計能力之後,有時候發生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們去檢查了。

五、合理利用一些數的性質

5. 初一數學答題解題方法與技巧

數學的大題解題是有很多方法的,下面我就大家整理一下初一數學答題解題方法與技巧,僅供參考。

圖解分析法這實際是一種模擬法
具有很強的直觀性和針對性,數學教學中運用得非常普遍。如工程問題、速度問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之。
因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種 數學 方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
親身體驗法如講逆水行船與順水行船問題
有很多學生都沒有坐過船,對順水行船、逆水行船、水流的速度,學生難以弄清。為了讓學生明白,我舉騎自行車為例(因為大多數學生會騎自行車),學生有親身體驗,順風騎車覺得很輕松,逆風騎車覺得很困難,這是風速的影響。並同時講清,行船與騎車是一回事,所產生影響的不同因素一個是水流速,一個是風速。這樣講,學生就好理解。

換元法是數學中一個非常重要而且應用十分廣泛的 解題方法 。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
審題的仔細性
仔細審題是正確理解題目的基本意思,是正確解題的基礎。在做應用題過程中,學生審題不清楚、不仔細,是做錯題的主要原因。如例1:小青蛙說:「我每天吃30隻蟲子。」大青蛙說:「我每天比你多吃32隻蟲子。」問:兩只大青蛙和一隻小青蛙7天吃多少只蟲子?因學生審題不清導致的解題錯誤大概有以下幾類。①沒仔細分析大青蛙吃多少只蟲子,直接列式為:(30+32+32)×7。②沒看清提問,直接列式:(30+30+32)×7。③兩種錯誤皆有,列式為:(30+32)×7。這幾種是常見的審題不仔細導致的解題錯誤,這一類錯誤往往多見於較簡單的應用題解題中。

以上就是我為大家整理的初一數學答題解題方法與技巧。

6. 初一數學大題解題方法與技巧

數學的大題是很難的一部分,下面我就大家整理一下初一數學大題 解題方法 與技巧,僅供參考。

代入驗證法
代入驗證法也是一個比較有效且簡單的演算法,多用於已知條件求解的案例中,這種題目多為送分題,像在二次函數運算時,題目中給出二次函數經過兩點,求解這個解析式,如果不想列方程式進行計算,可以直接數據代入答案中解析式,選出正確答案即可。
常用的數學思想方法
1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。

2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
理清思路,從問題的思考角度培養學生的解題技巧
高效課堂教學除了概念的講解之外,主要集中在解題能力的培養上。學生不僅要理解例題,而且要做大量的練習題。在解題訓練中,教師首先要引導學生分析題意,明確思路,再動筆解題。培養學生解題思路時,教師可以要求學生嚴格遵守一定的解題程序去思考,以形成良好的解題習慣。

進行解題思考時,學生首先要仔細地讀題,弄清楚題目考察什麼,明確各個數據之間的關系,然後解題。有必要時可以把相關的數據關系先列出來,以提高解題的效率,也提高解題的准確度。例如,學習求「幾分之幾」的方法時,教師先不必急著答題,而是引導學生進行思考,誰是誰的幾分之幾。經過思考,學生知道了用乘法計算,解題就容易了。從讀題、思考、發現規律到最後解題,學生的思路都非帶清晰,形成了良好的解題思考習慣,學習過程就易提高效率和質量。

以上就是我為大家整理的初一數學大題解題方法與技巧。

閱讀全文

與初一數學題解決方法相關的資料

熱點內容
微信改語音在哪裡設置方法 瀏覽:247
老人出虛汗治療方法推薦 瀏覽:503
財務風險的研究方法 瀏覽:156
桂圓花蜜的功效與作用及食用方法 瀏覽:844
腦中風的鍛煉方法視頻 瀏覽:82
交通規劃如何尋找規劃方法 瀏覽:495
知陰的使用方法 瀏覽:1000
繪制地圖一般使用什麼方法 瀏覽:995
長琶音的正確彈奏方法 瀏覽:272
前列腺增生好的治療方法 瀏覽:928
鼻內用糖皮質激素的正確使用方法 瀏覽:587
客廳收納技巧有哪些方法 瀏覽:316
冷凍飲品色素檢測方法 瀏覽:515
起動機無法啟動的正確測量方法 瀏覽:628
腰脫最好鍛煉方法 瀏覽:311
手機清理垃圾內存教程方法 瀏覽:789
上背部僵硬鍛煉方法 瀏覽:801
螺紋摩擦防松方法有哪些 瀏覽:900
中醫治療狐臭的方法 瀏覽:933
艾灸無煙包的使用方法 瀏覽:881