1、凱氏定氮法
凱氏弊余乎定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。
由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。
優點:可用於所有食品的蛋白質分析中;操作相對比較簡單;實驗費用較低;結果准確,是一種測定蛋白質的經典方法;用改進方法(微量凱氏定氮法)可測定樣品中微量的蛋白質。
缺點:凱氏定氮法只是一個氧化還原反應,把低價氮氧化並轉為氨鹽來測定,而不能把高價氮還原為氮鹽的形式,所以不可以測出物質中所有價態的氮含量。
2、雙縮脲法
雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。
當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。
優點:測定速度較快,干擾物質少,不同蛋白質產生的顏色深淺相近。
缺點:①靈敏度差; ② 三羥甲基氨基甲烷、一些氨基酸和EDTA等會干擾該反應。
3、酚試劑法
取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。
優點:靈敏度高,對水溶性蛋白質含量的測定很有效。
缺點:①費時,要精確控制操作時間;②酚法試劑的配製比較繁瑣。
4、紫外吸收法
大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中租悉有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。
取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。
優點:簡便、靈敏、快速,不消耗樣品,測定後能回收。
缺點:①測定蛋白質含量的准確度較差,專一性差; ②干擾物質多,若樣品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物質,會出現較大的干擾。
5、考馬斯亮藍法
考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。
在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。
一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。
優點:靈敏度高,測定快速、簡便,干擾物質少,不受酚類、游離氨基酸和緩沖劑、絡合劑的影響,適合大量樣品的測定。
缺點:由於各毀謹種蛋白質中的精氨酸和芳香族氨基酸的含量不同,因此用於不同蛋白質測定時有較大的偏差。
② 蛋白質的檢驗方法
蛋白質測定方法:
測定蛋白質的方法可分為兩大類:
一類是利用蛋白質的共性,即含氮量 、肽鍵和折射率測定蛋白質含量 ;
另一類是利用蛋白質中特定氨基酸殘基、酸性和鹼性基團 以及芳香基團等測定蛋白質含量。
(1) 凱氏定氮法: 是通過測出樣品中的總含氮量再乘以相應的蛋白質系數而求出蛋白質的含量,由於樣品中含有少量非蛋白質含氮化合物,故此法的結果稱為粗蛋白質含量。(是食品上蛋白質含量測定最常用的方法)
(2) 雙縮脲法
(3) 染料結合法
(4) 酚試劑法:方法簡便快速,故多用於生產單位質量控制分析。
(5) 紫外分光光度法-近紅外光譜法
③ 說明常用蛋白質測定方法的原理,並對各種方法加以比較
1、凱氏定氮法
准備4個50mL凱氏燒瓶並標號,想1、2號燒瓶中加入定量的蛋白質樣品,另外兩個燒瓶作為對照,在每個燒瓶中加入硫酸鉀-硫酸銅混合物,再加入濃硫酸,將4個燒瓶放到消化架上進行消化。
消化完畢後進行蒸餾,全部蒸餾完畢後用標准鹽酸滴定各燒瓶中收集的氨量,直至指示劑混合液由綠色變回淡紫紅色,即為滴定終點,結算出蛋白質含量。
2、雙縮脲法
雙縮脲法是第一個用比色法測定蛋白質濃度的方法,硫銨不幹擾顯色, Cu2+與蛋白質的肽鍵,以及酪氨酸殘基絡合,形成紫藍色絡合物,此物在540nm波長處有最大吸收。
利用標准蛋白溶液和雙縮脲試劑繪制標准曲線,將待測血清與硫酸鈉在待測試管中混合,並只加入硫酸鈉不含血清的試管作對照,將兩支試管加入等量的雙縮脲試劑,混合後於37℃環境中放置10分鍾,在540nm波長進行比色,以對照管調零,讀取吸光度值,標准曲線上直接查出蛋白質含量。
3、酚試劑法
取6支試管標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,每支試管液體總量加入蒸餾水補足而保持一致,混合均勻,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。
4、紫外吸收法
大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。
取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。
5、考馬斯亮藍法
Bradford濃染液的配製:將100mg考馬斯亮藍G-250溶於50ml 95%乙醇,加入100ml85%的磷酸,用蒸餾水補充至200ml,此染液放4℃至少6個月保持穩定。
標准曲線蛋白質樣本的准備:盡量使用與待測樣本性質相近的蛋白質作為標准品,測定抗體,可用純化的抗體作為標准。待測樣本是未知的,也可用抗體作為標准蛋白。通常在20ug—150ug/100ul之間繪制標准曲線。
將待測樣本溶於緩沖溶液中,該緩沖溶液應與製作標准曲線的緩沖溶液相同(最好用PBS)。按1:4用蒸餾水稀釋濃染料結合溶液,出現沉澱,過濾除去。
每個樣本加5ml稀釋的染料結合溶液,作用5~30min。染液與蛋白質結合後,將由紅色變為藍色,在595nm波長下測定其吸光度。注意,顯色反應不得超過30min。根據標准曲線計算待測樣本的濃度。
④ 媯楠岃泲鐧借川鐨勬柟娉曞強鐜拌薄
媯楠岃泲鐧借川鐨勬柟娉曞強鐜拌薄濡備笅錛
1銆佸弻緙╄劜娉曟槸媯嫻嬭泲鐧借川鐨勪竴涓姣旇緝綆鍗曠殑鏂規硶銆傝繖縐嶆嫻嬫柟娉曠殑鐏墊晱搴︽瘮杈冧綆涓鐐癸紝浣嗘槸閫熷害鍗存瘮杈冨揩錛屼竴鑸鐢20鍒30鍒嗛挓鐨勬椂闂村氨鑳藉熸湁鏁堝湴媯嫻嬪嚭浜轟綋鍐呰泲鐧借川鐨勫惈閲忎簡銆
涓嶈繃閫氳繃鍙岀緝鑴叉硶鍙鑳藉熸嫻嬪嚭錏嬬櫧璐ㄥ惈閲忓氬皯錛屽苟涓嶈兘澶熸竻妤氱殑鍒ゆ柇鍑烘槸鍝縐嶈泲鐧借川銆傚洜涓鴻繖縐嶆柟娉曟嫻嬬殑鏃跺欎笉鍚岃泲鐧借川鐨勬樉鑹茬▼搴︽槸鐩鎬技鐨勶紝鎵浠ュ氨寰堥毦杈ㄥ埆浜嗐
2銆佺傳澶栫嚎鍚告敹娉曟槸涓縐嶅緢鐏墊晱鐨勭敤鏉ユ嫻嬭泲鐧借川鐨勬柟娉曪紝涓鑸鍙闇瑕佷簲鍒嗛挓鍒板嶮鍒嗛挓鐨勬椂闂村氨鑳藉熸湁鏁堢殑媯嫻嬪嚭鏉ヤ簡銆傝泲鐧借川涓鐙鐗圭殑閰姘ㄩ吀浠ュ強鑹叉皚閰歌兘澶熷湪緔澶栫嚎闀垮害280綰崇背鐨勫湴鏂瑰嚭鐜板厜鍚告敹銆
鎵浠ユ垜浠鍙闇瑕佽傚療鍦ㄧ傳澶栫嚎闀垮害280綰崇背鐨勫湴鏂瑰嚭鐜扮殑鍏夊惛鏀跺惈閲忓氨鑳藉熸湁鏁堢殑鎺ㄦ祴鍑轟漢浣撳唴鐨勮泲鐧借川鍚閲忎簡銆
鐜拌薄錛
鍦ㄧ⒈鎬ф憾娑蹭腑錛屽弻緙╄劜璇曞墏鑳戒笌錏嬬櫧璐ㄥ弽搴旓紝褰㈡垚綰㈣愯壊緇滃悎鐗╋紝棰滆壊娣辨祬涓庤泲鐧借川嫻撳害鎴愭f瘮錛庡洜姝わ紝媯楠岃泲鐧借川鍙鐢ㄦ淮鍔犲弻緙╄劜鍙樻垚綰㈣愯壊鐨勬柟娉曪紝鍑虹幇鐨勭幇璞℃槸綰㈣愯壊銆
⑤ 蛋白質含量的測定方法有哪些
蛋白質含量測定的方法有微量凱氏定氮法、雙縮脲法、folin―酚試劑法、考馬斯亮蘭法、紫外吸收法等。
1、微量凱氏定氮法:含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸銨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。
2、雙縮脲法:雙縮脲是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。
3、folin―酚試劑法:這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難,近年來逐漸被考馬斯亮蘭法所取代。
4、考馬斯亮蘭法:1976年由bradford建立的考馬斯亮蘭法,是根據蛋白質與染料相結合的原理設計的。這一方法是目前靈敏度最高的蛋白質測定法。
5、紫外吸收法:蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。
⑥ 用什麼方法檢測蛋白質
目前食品中蛋白質的測定方法有蛋白質自動分析儀,近紅外自動測定儀,紫外分光光度法以及凱氏定氮法等。本文採用納氏試劑作為顯色劑測定食品中蛋白質含量,適用范圍廣,可用於各類食品及保健食品的檢測。用本法對標准品、質控樣品進行測定獲得滿意結果,對批量樣品的快速測定更具有實用性。現將結果報告如下。
材料與方法
儀器與試劑 WFZ800-D3型紫外分光光度計(北京第二光學儀器廠)。分析純硫酸、硫酸銅、硫酸鉀。(1)納氏試劑:稱取碘化汞100g及碘化鉀70g,溶於少量無氨蒸餾水中,將此溶液緩緩傾入己冷卻的32%氫氧化鈉溶液500ml中,並不停攪拌,再用蒸餾水稀釋至1L,貯於棕色瓶中,用橡皮塞塞緊,避光保存。(2)硫酸銨標准儲備溶液(1.0g/L):精確稱取經硫酸乾燥的硫酸銨0.4720g,加水溶解後移入100mL容量瓶中,並稀釋至刻度,混均此液每毫升相當於1.0mgNH3-N(10℃下冰箱內儲存穩定1年以上)。(3)硫酸銨標准使用溶液(0.01g/L):用移液管精密吸取1.0ml標准儲備液(1.0g/L)於100ml容量瓶內,加水稀釋至刻度,混勻,此溶液每毫升相當於10.0μg NH3-N。
方法
標准曲線繪制 取25ml比色管7支,分別准確吸取0.01g/L硫酸銨標准使用液0.00,0.5,1.0,3.0,5.0,7.0,10.0ml(相當於標准0.0,5.0,10.0,30.0,50.0,70.0,100.0μg),加水至10ml刻度,於標准系列管中各加2ml納氏試劑,混勻後放置10min,移入1cm比色皿內,以零管為參比,於波長420mm處測量吸光度,以標准管含量為橫坐標(μg),對應的吸光度(A)值為縱坐標繪制標准曲線。
樣品測定 選擇牛奶和奶粉為檢測樣品。精密稱取樣品0.1~2.0g置於250ml三角瓶中,加入0.2gCuSO4、1.0gK2SO4、硫酸10ml,先小火加熱,待內容物全部炭化,泡沫停止後,加大火力至液體呈藍色,使H2SO4剩餘量約為3ml左右為止,室溫放冷後,沿瓶壁慢慢加入10ml水,移入100ml容量瓶中,用少量蒸鎦水洗三角瓶3次,洗液全部並入容量瓶中,冷卻,加蒸餾水至刻度,混勻。測定時取0.5ml,加水至10ml刻度,以後操作同標准曲線。同時做空白試驗。
計算公式
X=c×Fm×V2V1×1000×1000×1000
式中:X-試樣中蛋白質含量(g/100g或g/100ml)
C-試樣測定液中扣除空白後氮的含量(μg)
V1-試樣消化液定容體積(ml)
V2-測定用消化液體積(ml)
m-樣品質量(g)或體積(ml)
F-氮換算為蛋白質的系數。
蛋白質的氮含量一般為15%~17.6%,按16%計算乘以6.25即為蛋白質,乳製品為6.38,麵粉為5.7,肉及肉製品為6.25,大豆為5.71。
結果
2.1 測定波長選擇 含氮量為30μg的標准管在顯色後,在波長400~440mm范圍內每間隔5nm進行測定,最大吸收波長為420mm。
顯色劑用量選擇 含氮量為30μg的標准管分別加入不同量的納氏試劑,在420mm的波長下分別測定其吸光度結果。納氏試劑顯色劑加入量為1.5~3.0ml時吸光度基本無變化,本法選擇加入納氏試劑2.0ml。
顯色時間及穩定性 含氮量為30μg的標准管經顯色後,分別在10,30min,1,2,4,8h進行測定。顯色後10min~8h內吸光度穩定無變化。本法選顯色10min後測定。
標准曲線 回歸方程:y=0.016X-1.5×10-3,r=0.9998,最佳線性范圍0.0~100μg。
精密度 牛乳和奶粉2種樣品分別取6份按本法重復測定6次,牛乳和奶粉精密度測定結果:平均數分別為3.06,23.50;標准差分別為±0.029,±0.073;相對標准偏差分別為0.31%,0.94%。
對2種樣品利用標准加入法作回收試驗(表1) 結果可見,回收率為95.50%~99.44%。
2種方法測定結果比較 分別用GB/T5009.5-2003凱氏定氮法與本法測定。結果顯示,2種分析方法的測定結果差異無統計學意義(t=0.026,P>0.05)。
測定標准物質 用本法測定4種不同的蛋白質標准物質,測定結果與標准物質含量一致。
以納氏試劑作為顯色劑快速測定食品中蛋白質的方法特點簡單、快速,適用於批量樣品測定。在鹼性條件下NH3-N與納氏試劑反應生成的黃色化合物穩定。本法與國標凱氏定氮法進行比較t=0.026,P<0.05,n=32,2種方法測定結果無明顯差異。測定范圍廣,線性范圍寬0.0~100.0μg;精密度高;相對標准偏差為0.31%~0.94%;回收率好,加標回標率為95.50%~99.44%。用本法測定標准物質結果一致,用於質量控制樣本測定結果滿意。本法儀器試劑簡單,易於基層普及,有利於推廣應用。
⑦ 測定蛋白質含量的方法有哪些
1、凱氏定氮法
凱氏定氮法是由丹麥化學家凱道爾於1833年建立的,現已發展為常量、微量、平微量凱氏定氮法以及自動定氮儀法等,是分析有機化合物含氮量的常用方法。
凱氏定氮法的理論基礎是蛋白質中的含氮量通常占其總質量的16%左右(12%~一19%),因此,通過測定物質中的含氮量便可估算出物質中的總蛋白質含量(假設測定物質中的氮全來自蛋白質),即: 蛋白質含量=含氮量/16%。
2、紫外吸收光譜法
紫外吸收光譜法又稱紫外分光光度法,是根據物質對不同波長的紫外線吸收程度不同而對物質組成進行分析的方法。此法所用儀器為紫外吸收分光光度計或紫外-可見吸收分光光度計。
光源發出的紫外光經光柵或棱鏡分光後,分別通過樣品溶液及參比溶液,再投射到光電倍增管上,經光電轉換並放大後,由繪制的紫外吸收光譜可對物質進行定性分析。
(7)家庭檢測蛋白質的方法擴展閱讀
蛋白質含量測定的意義:
膳食蛋白質符合人的需要時,可維持正常代謝,生成抗體,抵抗感染,有病也易恢復。相反,蛋白質供給不足時,會減輕體重,易患貧血,容易感染疾病;創傷、骨折不易癒合;嚴重缺乏時,血漿蛋白降低,可引起浮腫。
此外癌症與蛋白質攝入量不足也有一定關系。但是,蛋白質攝入過多也可造成腎臟負擔。食物蛋白質在體內代謝所生成的尿酸、氨、酮體等累積過多,可導致衰老;而氨還對機體有毒性,不僅會陡然增加肝臟負擔,還會增加胃腸負荷,引起肝腎受累以及消化不良等症。所以,蛋白質的攝入量要適當。