導航:首頁 > 解決方法 > 機器學習方法解決實際問題

機器學習方法解決實際問題

發布時間:2023-10-18 02:28:36

『壹』 常用機器學習方法有哪些

機器學習中常用的方法有:

(1) 歸納學習

符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。

函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。

(2) 演繹學習

(3) 類比學習:典型的類比學習有案例(範例)學習。

(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。

(1)機器學習方法解決實際問題擴展閱讀:

機器學習常見演算法:

1、決策樹演算法

決策樹及其變種是一類將輸入空間分成不同的區域,每個區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。

2、樸素貝葉斯演算法

樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。

3、支持向量機演算法

基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類問題。

『貳』 機器學習處理問題如何選擇一個合適的演算法

我們在進行數據分析或者數據挖掘工作的時候,總會遇到很多的問題,而解決這些問題的方式有很多。如果需要我們用機器學習來處理,那麼就需要我們根據演算法去選擇一個合適的演算法。但問題是,用機器學習處理問題,該如何選擇一個合適的演算法呢?下面我們就給大家介紹一下選擇演算法的流程,希望這篇文章能夠更好地幫助大家理解機器學習。
選擇演算法是一個比較麻煩的事情,但是並不是不能選擇,選擇就需要我們十分細心,這樣我們才能夠選擇出一個合適的演算法,以便於我們更好的處理問題。選擇演算法首先需要分析業務需求或者場景,這一步完成以後,就需要我們初探數據,看看自己是否需要預測目標值,如果需要的話,那麼就使用監督學習,當然,使用監督學習的時候,如果發現了目標變數,如果是離散型,那麼就使用分類演算法,如果是連續型,那麼就使用回歸演算法。當然,如果我們發現不需要預測目標值,那麼就使用無監督學習,具體使用的演算法就是K-均值演算法、分層聚類演算法等其他演算法。
當我們充分了解數據及其特性,有助於我們更有效地選擇機器學習演算法。採用以上步驟在一定程度上可以縮小演算法的選擇范圍,使我們少走些彎路,但在具體選擇哪種演算法方面,一般並不存在最好的演算法或者可以給出最好結果的演算法,在實際做項目的過程中,這個過程往往需要多次嘗試,有時還要嘗試不同演算法。但是對於初學者,還是根據上面選擇演算法的方式選擇演算法為好。
說完了選擇演算法的步驟,下面我們就說一下spark在機器學習方面的優勢,在大數據上進行機器學習,需要處理全量數據並進行大量的迭代計算,這要求機器學習平台具備強大的處理能力。Spark與Hadoop兼容,它立足於內存計算,天然的適應於迭代式計算,Spark是一個大數據計算平台,在這個平台上,有我SQL式操作組件Spark SQL;功能強大、性能優良的機器學習庫Spark MLlib;還有圖像處理的Spark Graphx及用於流式處理的Spark Streaming等,其優勢十分明顯。
優勢一:在完整的大數據生態系統中,有我們熟悉的SQL式操作組件Spark SQL,還有功能強大、性能優良的機器學習庫、圖像計算及用於流式處理等演算法。
優勢二:在高性能的大數據計算平台中,由於數據被載入到集群主機的分布式內存中。數據可以被快速的轉換迭代,並緩存後續的頻繁訪問需求。基於內存運算,Spark可以比Hadoop快100倍,在磁碟中運算也比hadoop快10倍左右。
優勢三:這個演算法能夠與Hadoop、Hive、HBase等無縫連接:Spark可以直接訪問Hadoop、Hive、Hbase等的數據,同時也可使用Hadoop的資源管理器。
在這篇文章中我們給大家介紹了機器學習處理問題如何選擇一個合適的演算法以及spark演算法的優勢的內容,通過這篇文章相信大家已經找到了使用機器學習解決數據分析以及數據挖掘問題的方法了吧?希望這篇文章能夠幫助到大家。

『叄』 有人用機器學習的方法解決流體力學問題嗎

可以做,但有幾個困難:
1,如果訓練樣本是RANS的結果,最終預測精度不會超過RANS。
2,如果自變數是邊界條件(包含幾何形狀),維度太高,樣本不夠

比較可行的方案:
1,不代替而是擴展CFD的能力
2,不做可以泛化的模型,縮減狀態空間維度,只做具體問題的簡單變化

可惜這個方案早有人做了,不過沒打著機器學習的招牌,而是叫surrogate-based optimization。一般是在設計方案基礎上解放幾個參數的自由度,采一些樣本(CFD或者實驗),做一下回歸模型,然後在參數空間里找最優,還是挺有趣的方向。

那機器學習研究湍流這樣的美好想法,首先是要建立在對問題理解深刻的基礎上。

『肆』 機器學習的研究內容有哪些

近年來,有很多新型的機器學習技術受到人們的廣泛關注,也在解決實際問題中,提供了有效的方案。這里,我們簡單介紹一下深度學習、強化學習、對抗學習、對偶學習、遷移學習、分布式學習、以及元學習,讓大家可以明確機器學習的方向都有哪些,這樣再選擇自己感興趣或擅長的研究方向,我覺得這是非常理智的做法。
▌深度學習
不同於傳統的機器學習方法,深度學習是一類端到端的學習方法。基於多層的非線性神經網路,深度學習可以從原始數據直接學習,自動抽取特徵並逐層抽象,最終實現回歸、分類或排序等目的。在深度學習的驅動下,人們在計算機視覺、語音處理、自然語言方面相繼取得了突破,達到或甚至超過了人類水平。深度學習的成功主要歸功於三大因素——大數據、大模型、大計算,因此這三個方向都是當前研究的熱點。
在過去的幾十年中,很多不同的深度神經網路結構被提出,比如,卷積神經網路,被廣泛應用於計算機視覺,如圖像分類、物體識別、圖像分割、視頻分析等等;循環神經網路,能夠對變長的序列數據進行處理,被廣泛應用於自然語言理解、語音處理等;編解碼模型(Encoder-Decoder)是深度學習中常見的一個框架,多用於圖像或序列生成,例如比較熱的機器翻譯、文本摘要、圖像描述(image captioning)問題。
▌強化學習
2016 年 3 月,DeepMInd 設計的基於深度卷積神經網路和強化學習的 AlphaGo 以 4:1 擊敗頂尖職業棋手李世乭,成為第一個不藉助讓子而擊敗圍棋職業九段棋手的電腦程序。此次比賽成為AI歷史上里程碑式的事件,也讓強化學習成為機器學習領域的一個熱點研究方向。
強化學習是機器學習的一個子領域,研究智能體如何在動態系統或者環境中以「試錯」的方式進行學習,通過與系統或環境進行交互獲得的獎賞指導行為,從而最大化累積獎賞或長期回報。由於其一般性,該問題在許多其他學科中也進行了研究,例如博弈論、控制理論、運籌學、資訊理論、多智能體系統、群體智能、統計學和遺傳演算法。
▌遷移學習
遷移學習的目的是把為其他任務(稱其為源任務)訓練好的模型遷移到新的學習任務(稱其為目標任務)中,幫助新任務解決訓練樣本不足等技術挑戰。之所以可以這樣做,是因為很多學習任務之間存在相關性(比如都是圖像識別任務),因此從一個任務中總結出來的知識(模型參數)可以對解決另外一個任務有所幫助。遷移學習目前是機器學習的研究熱點之一,還有很大的發展空間。
▌對抗學習
傳統的深度生成模型存在一個潛在問題:由於最大化概率似然,模型更傾向於生成偏極端的數據,影響生成的效果。對抗學習利用對抗性行為(比如產生對抗樣本或者對抗模型)來加強模型的穩定性,提高數據生成的效果。近些年來,利用對抗學習思想進行無監督學習的生成對抗網路(GAN)被成功應用到圖像、語音、文本等領域,成為了無監督學習的重要技術之一。
▌對偶學習
對偶學習是一種新的學習範式,其基本思想是利用機器學習任務之間的對偶屬性獲得更有效的反饋/正則化,引導、加強學習過程,從而降低深度學習對大規模人工標注數據的依賴。對偶學習的思想已經被應用到機器學習很多問題里,包括機器翻譯、圖像風格轉換、問題回答和生成、圖像分類和生成、文本分類和生成、圖像轉文本和文本轉圖像等等。
▌分布式學習
分布式技術是機器學習技術的加速器,能夠顯著提高機器學習的訓練效率、進一步增大其應用范圍。當「分布式」遇到「機器學習」,不應只局限在對串列演算法進行多機並行以及底層實現方面的技術,我們更應該基於對機器學習的完整理解,將分布式和機器學習更加緊密地結合在一起。
▌元學習
元學習(meta learning)是近年來機器學習領域的一個新的研究熱點。字面上來理解,元學習就是學會如何學習,重點是對學習本身的理解和適應,而不僅僅是完成某個特定的學習任務。也就是說,一個元學習器需要能夠評估自己的學習方法,並根據特定的學習任務對自己的學習方法進行調整。

閱讀全文

與機器學習方法解決實際問題相關的資料

熱點內容
簡便疊衣服闊腿褲的方法省空間 瀏覽:493
議論文要寫解決方法嗎 瀏覽:920
雨傘怎麼折是最簡單的方法 瀏覽:848
vlookup函數查找出錯解決方法 瀏覽:683
經緯儀測繪法測地圖的方法步驟 瀏覽:727
多種方法測量微小長度的變化量 瀏覽:25
手機號算年齡方法用的什麼基數 瀏覽:939
檸檬汁最簡單的方法怎麼做 瀏覽:494
18米高散熱器安裝連接方法 瀏覽:430
家裡養貓最佳方法 瀏覽:134
保險費率釐定方法中最常用的方法 瀏覽:883
堆堆的製作方法視頻 瀏覽:660
移民的解決方法 瀏覽:912
藏手機游戲方法 瀏覽:615
清理手機灰塵的好方法視頻 瀏覽:388
煙草花葉病毒解決方法 瀏覽:839
供水器水壓低解決方法 瀏覽:489
馬蘭頭食用方法 瀏覽:832
貴州污泥的檢測方法 瀏覽:303
腰椎鍛煉飛燕方法 瀏覽:883