『壹』 油煙有哪些監測方法
油煙顆粒物的監測方法有濾膜稱重法、微振盪天平法、β衰減法、光散射法、晶體微天平法等等多種經典方法,任何一種方法都有其各自優勢與缺陷,考慮到便攜或在線監測設備的應用環境,光散射法可能是最適合油煙顆粒物監測的方法,但必須解決粘性的油煙顆粒物對光學元器件表面的污染問題。
無論採用何種顆粒物監測方法,通常將濾膜稱重法作為基準檢測以及溯源方法。
『貳』 總有機碳的測定
總碳(totalcarbon,TC),水中存在的有機碳、無機碳和元素碳的碳總含量。
總無機碳(total inorganic carbon,TC),水中存在的元素碳、總二氯化碳、一氧化碳、碳化物、氰酸鹽、氰化物和硫氰酸鹽的碳含量。
總有機碳(total organic carbon,TOC),水中存在的溶解性和懸浮性有機碳的碳含量。
溶解性有機碳(dissoluble organic carbon,DOC),水中存在的可以通過0.45μm孔徑濾膜的有機物的碳含量。
除了有機碳,水樣可能含二氧化碳(CO2)和CO2-3。測定前,用不含二氧化碳(CO2)及有機物的氣體吹脫酸化的水樣,以去除無機碳。或者測定總碳(TC)和總二氧化碳(CO2),再以總碳減去總二氧化碳(CO2),算出有機碳含量。此法最適合於總二氧化碳(CO2)小於總有機碳的水樣。
易揮發的有機物,如苯、甲苯、環己烷和三氯甲烷可能在吹脫二氧化碳(CO2)過程中逸出。因此,應分別測定這些化合物的總有機碳,或採用差值法計算。
當元素碳微粒(煤煙)、碳化物、氰化物、氰酸鹽和硫氰鹽存在時,可與有機碳同時測定。
方法提要
向水樣中加入適當的氧化劑,或紫外催化(TiO2)等,使水中有機碳轉為二氧化碳。無機碳經酸化和吹脫被除去,或單獨測定。生成的二氧化碳(CO2)可直接測定,或還原為CH4再測定。二氧化碳(CO2)的測定方法包括:非色散紅外光譜法、滴定法(在非水溶液中)、熱導池檢測器(TCD)、電導滴定法、電量滴定法、二氧化碳(CO2)敏感電極法和把二氧化碳(CO2)還原為CH4後火焰離子化檢測器法。
儀器和裝置
有機碳測定儀。
試劑和材料
純水實驗用水的要求應符合表82.1。
表82.1 總有機碳測定稀釋水的要求
磷酸(0.5mol/L)。
鄰苯二甲酸氫鉀標准儲備溶液ρ(有機碳,C)=1000mg/L稱取在不超過120℃乾燥2h的鄰苯二甲酸氫鉀2.1254g溶於適量純水中,移入1000mL容量瓶中,加水稀釋至刻度,搖勻。此溶液貯存於冰箱內,可穩定2個月。
鄰苯二甲酸氫鉀標准溶液ρ(有機碳,C)=100mg/L吸取100mL鄰苯二甲酸氫鉀標准儲備溶液於1000mL容量瓶內,加純水至刻度,搖勻,此溶液在冰箱內存放,可穩定約1周。
碳酸鈉、重碳酸鈉標准溶液ρ(無機碳,C)=1000mg/L稱取285℃乾燥1h的碳酸鈉(Na2CO3)4.4122g溶於少量純水,倒入1000mL容量瓶中,加純水至500mL左右,加入經硅膠乾燥的分析純NaHCO33.4970g振盪溶解後,加純水至刻度,搖勻。此溶液在室溫下穩定。
載氣氮氣或氧氣(>99.99%)。
校準曲線
吸取1.00mL、2.00mL、5.00mL、10.00mL、25.00mL鄰苯二甲酸氫鉀標准儲備溶液分別移入100mL容量瓶內,加水至刻度,搖勻。在有機碳測定儀上測定各標准溶液和空白樣。以總有機碳的質量濃度(mg/L)對儀器的響應值繪制校準曲線。
分析步驟
水樣經振盪均勻後再進行測定,如振盪後仍不能得到均勻的樣品,應使之均化。
分析前應去除水樣中存在的二氧化碳(CO2)。把試樣的總有機碳含量調節至儀器的工作范圍內,直接進行測定。水樣中易揮發性在機物的逸失應降至最低程度,應經常控制系統避免泄漏。測定的響應值在校準曲線上查得水樣中總有機碳的質量濃度(mg/L)。
用復測標准溶液對分析過程進行檢驗,提供校正值。容許的偏差為:1~10mg/L有機碳,±10%;大於100mg/L有機碳,±5%。
若出現超差,應檢查其來源:
1)儀器裝置中的故障(例如,氧化系統或檢測系統發生故障、泄漏差)。
2)試劑濃度改變。
3)系統被污染、溫度和氣體調節方面的錯誤。
為了證實測定系統的氧化效率,應盡可能採用氧化性能類似,能代替鄰苯二甲酸氫鉀的試劑進行驗證。整個測量系統應每周校核一次。
『叄』 顆粒物的濃度測定
在標准狀態下(即壓力760毫米汞柱,溫度為273K)氣體每單位體積含塵重量(微克或毫克)數稱為含塵濃度。測定方法主要有:
重量法
又叫重量濃度法,採用過濾器或其他分離器收集粉塵並稱重的方法,是測定含塵量的可靠方法。過濾器可用濾紙、聚苯乙烯的微濾膜等。有多種測定儀器,如靜電降塵重量分析儀可測出低達每標准立方米含塵10微克的濃度。若將已知有效表面積的集塵裝置放在露天的適當位置,收集足夠量的塵粒進行稱重,可測定降塵量。
光散射法
激光粉塵儀具有新世紀國際先進水平的新型內置濾膜在線采樣器,儀器在連續監測粉塵濃度的同時,可收集到顆粒物,以便對其成份進行分析,並求出質量濃度轉換系數K值。可直讀粉塵質量濃度(mg/m3),具有PM10、PM5、PM2.5、PM1.0及TSP切割器供選擇。儀器採用了強力抽氣泵,使其更適合需配備較長采樣管的中央空調排氣口PM10可吸入顆粒物濃度的檢測,和對可吸入塵PM2.5進行監測。
儀器符合工業企業衛生標准(GBZ1-2002)、工作場所有害因素接觸限值(GBZ2-2002)標准、衛生部WS/T206-2001《公共場所空氣中可吸入顆粒物(PM10)測定法-光散射法》標准、勞動部LD98-1996《空氣中粉塵濃度的光散射式測定法》標准以及鐵道部TB/T2323-92《鐵路作業場所空氣中粉塵測定相對質量濃度與質量濃度的轉換方法》等行業標准以及衛生部衛法監發[2003] 225號文件發布的《公共場所集中空調通風系統衛生規范》。
濃度規格表比較法
應用較廣泛的是M.R.林格曼提出的林格曼煤煙濃度表(見表)。該表是在長14厘米、寬20厘米的各張白紙上描出寬度分別為1.0、2.3、3.7、5.5、10.0毫米的方格黑線圖,使矩形白紙板內黑色部分所佔的面積大致為 0、20、40、60、80、100%,以此把煙塵濃度區別為6級,分別稱為0、1、2、3、4、5度。在標准狀態下,1度煙塵濃度相當於0.25克/立方米,2度相當於 0.7克/立方米,3度相當於1.2克/立方米,4度約為2.3克/立方米,5度約為4~5克/立方米。在使用時,將濃度表豎立在與觀測者眼睛大致相同的高度上,然後在離開紙板16米、離煙囪40米的地方注視此紙板,與離煙囪口30~45厘米處的煙塵濃度作比較。觀測時,觀測者應與煙氣流向成直角,不可面向太陽光線,煙囪出口的背景上不要有建築物、山等障礙物。除林格曼煤煙濃度表外,還有其他形式的濃度表和進行濃度比較的測定儀器,如望遠鏡式煤煙濃度測定儀和煙塵透視筒等。濃度規格表比較法的優點是簡便易行,缺點是易產生誤差。
光度測定法
用一定強度的光線通過受測氣體,或用水洗滌一定量的受測氣體,使氣體中的塵粒進入水中,然後用一定強度的光線通過含塵水,氣體或水中的塵粒就對光線產生反射和散射現象,用光電器件測定透射光或散射光的強度,並與標準的光度比較,即可換算成含塵濃度。
粒子計演算法
將已知空氣體積中的粉塵沉降在一透明表面上,然後在顯微鏡下數出塵粒數目,測量結果用每立方厘米內的粒子數表示,必要時可換算成含塵濃度,其換算的近似值為:每立方厘米有500個塵粒,相當於在標准狀態下含塵濃度每立方米約2毫克,2000個塵粒約為每立方米10毫克,20000個塵粒約為每立方米100毫克。⑤間接測量法:含塵氣流以湍流狀態通過測量管,由於粉塵粒子和管內壁之間的摩擦而使塵粒帶電,測量電流量,即可根據標准曲線換算出含塵濃度。此外,用熱電偶測定塵粒吸收特定光源的輻射熱,可間接測出含塵濃度。在離子化室內,測出空氣中塵粒對離子流的衰減。此法也可算出含塵濃度。測定下限可到每立方厘米 200個塵粒。
中華人民共和國環境保護行業標准
飲食業油煙凈化設備技術要求及檢測技術規范(試行)
http://www.zjepb.gov.cn/hbbj/hb/Hj062.pdf